Vol. 2 of 4 FEP-01/457/2013/C Central Kowloon Route Kai Tak West Contract No. HY/2014/07 February 2019

Environmental Permit No. EP-457/2013/C

Central Kowloon Route

Independent Environmental Checker Verification

Kai Tak West (HY/2014/07)

· · · · · · · · · · · · · · · · · · ·	11111 11111 11 000 (11 1/2014 01/
Reference Document/Plan	
Document/ Plan to be Certified / Verified:	Monthly EM&A Report No.11 (February 2019)
Date of Report:	11 March 2019 (Rev. 0)
Date received by IEC:	11 March 2019

Reference EP Condition

Works Contract

Environmental Permit Condition: 3.4

Submission of Monthly EM&A Report of the Project

3.4 Four hard copies and one electronic copy of monthly EM&A Report shall be submitted to the Director within 2 weeks after the end of each reporting month throughout the entire construction period. The EM&A Reports shall include a summary of all non-compliance. The submissions shall be certified by the ET Leader and verified by the IEC as complying with the requirements as set out in the EM&A Manual before submission to the Director. Additional copies of the submission shall be provided to the Director upon request by the Director.

IEC Verification

I hereby verify that the above referenced document/ $\frac{1}{plan}$ complies with the above referenced condition of EP-457/2013/C and FEP-01/457/2013/C.

Mondy 20.

Ms Mandy To Date: 12 March 2019

Independent Environmental Checker

Our ref: 0436942_IEC Verification Cert_KTW_Monthly EM&A Rpt No.11.docx

Gammon Construction Limited

Central Kowloon Route

Works Contract HY/2014/07 – Central Kowloon Route – Kai Tak West

Monthly EM&A Report for February 2019

[March 2019]

	Name	Signature
Prepared & Checked:	Ray Cheng	A STATE OF THE STA
Reviewed, Approved & Certified:	Y T Tang	Coglialing

Version: 0	Date:	11 March 2019

Disclaimer

This Environmental Monitoring and Audit Report is prepared for Gammon Construction Limited and is given for its sole benefit in relation to and pursuant to Contract HY/2014/07 and may not be disclosed to, quoted to or relied upon by any person other than Gammon Construction Limited without our prior written consent. No person (other than Gammon Construction Limited into whose possession a copy of this report comes may rely on this plan without our express written consent and Gammon Construction Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Table of Contents

	Pag	е
EXEC	UTIVE SUMMARY	3
1	INTRODUCTION	3
1.1 1.2	Purpose of the Report	
2	PROJECT INFORMATION	7
2.1	Background	7
2.2	Site Description	
2.3	Construction Programme and Activities	
2.4	Project Organization	
2.5	Status of Environmental Licences, Notification and Permits10	
3	ENVIRONMENTAL MONITORING REQUIREMENTS1	ı
3.1	Construction Dust Monitoring1	1
3.2	Construction Noise Monitoring14	1
3.3	Construction Water Monitoring16	
3.4	Landscape and Visual18	
4	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES18	3
5	MONITORING RESULTS19)
5.1	Construction Dust Monitoring19)
5.2	Regular Construction Noise Monitoring19	
5.3	Construction Water Monitoring20	
5.4	Waste Management2	
5. 5	Landscape and Visual2	
6	ENVIRONMENTAL SITE INSPECTION AND AUDIT22	2
7	ENVIRONMENTAL NON-CONFORMANCE23	3
7.1	Summary of Monitoring Exceedances23	3
7.2	Summary of Environmental Non-Compliance23	3
7.3	Summary of Environmental Complaints23	
7.4	Summary of Environmental Summon and Successful Prosecutions23	3
8	FUTURE KEY ISSUES24	1
8.1	Construction Programme for the Next Three Month24	1
8.2	Key Issues for the Coming Month24	
8.3	Monitoring Schedule for the Coming Month24	1
9	CONCLUSIONS AND RECOMMENDATIONS25	5
9.1	Conclusions29	5
9.2	Recommendations 25	

List of Tables

Table 2.1	Construction Activities in the reporting month	8
Table 2.2	Contact Information of Key Personnel	
Table 2.3	Status of Environmental Licenses, Notifications and Permits	
Table 3.1	Air Quality Monitoring Equipment	11
Table 3.2	Location of Construction Dust Monitoring Station	
Table 3.3	Noise Monitoring Parameters, Frequency and Duration	14
Table 3.4	Noise Monitoring Equipment for Regular Noise Monitoring	14
Table 3.5	Noise Monitoring Stations during Construction Phase	
Table 3.6	Noise Monitoring Parameters, Frequency and Duration	15
Table 3.7	Water Quality Monitoring Equipment	
Table 3.8	Impact Water Quality Monitoring Stations	16
Table 3.9	Water Quality Monitoring Parameters, Frequency and Duration	
Table 4.1	Status of Required Submission under Environmental Permit	18
Table 5.1	Summary of 24-hour TSP Monitoring Result in the Reporting Period	19
Table 5.2	Summary of 1-hour TSP Monitoring Result in the Reporting Period	19
Table 5.3	Summary of Construction Noise Monitoring Results in the Reporting Period	19
Table 5.4	Summary of Impact Water Quality Monitoring Results	20
Table 5.5	Summary of Water Quality Exceedances	20
Table 6.1	Observations and Recommendations of Site Audit	
Table 8.1	Construction Activities in the coming three month	24

List of Figures

Figure 1.1	Site Layout Plan
Figure 3.1	Location of Air Quality Monitoring Station
Figure 3.2	Locations of Noise Monitoring Station
Figure 3.3	Locations of Water Monitoring Station

List of Appendices

Appendix A	Construction Programme
Appendix B	Project Organization Structure
Appendix C	Implementation Schedule of Environmental Mitigation Measures
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Equipment
Appendix F	EM&A Monitoring Schedules
Appendix G	Air Quality Monitoring Results and their Graphical Presentations
Appendix H	Noise Monitoring Results and their Graphical Presentations
Appendix I	Water Monitoring Results
Appendix J	Detail of Water Quality Exceedance
Appendix K	Event and Action Plan
Appendix L	Cumulative Statistics on Complaints, Notification of Summons and Successful
	Prosecutions
Appendix M	Monthly Summary Waste Flow Table

AECOM Asia Co. Ltd. 2 March 2019

EXECUTIVE SUMMARY

Central Kowloon Route – Kai Tak West (CKR-KTW; Contract No. HY/2014/07) (hereafter called "the Project") covers part of the construction of the Central Kowloon Route (CKR).

The Project comprises the follow works:

- 50x30m access shaft with noise enclosure at Ma Tau Kok (MTK);
- 100m long cut-and-cover (C&C) tunnel at MTK;
- Demolition and re-provisioning of MTK Public Pier;
- 160m long underwater tunnel (UWT) (Stage 1);
- 210m long UWT (Stage 2);
- 60m long C&C tunnel at Kai Tak;
- 130m long depressed road and 200m long underpass at Kai Tak;
- 390m long underground tunnel ventilation adit at Kai Tak;
- · Seawall demolition and construction of new landing steps; and
- Barging Point enclosure and conveyor system.

The EM&A programme commenced on 4 April 2018. The impact EM&A for the Project includes air quality, noise and water quality monitoring.

This is the eleventh monthly EM&A Report presenting the EM&A works carried out during the period between 1 and 28 February 2019. As informed by the Contractor, major activities in the reporting period were:

Locations	Site Activities		
Kai Tak	Pipe piling		
	Setup of excavated soil storage area		
	Watermain diversion		
	Construction of ventilation adit		
	Construction of at-grade road		
Ma Tau Kok	Site clearance		
	TTM implementation,		
	Pipe piling works,		
	King post construction		
	Existing drainage diversion works		
	Fresh water pipe installation works		
	Project signboard construction		
	ELS & decking works for access shaft		
Kowloon Bay	Sheetpile and pipe pile construction for stage 1 temporary reclamation		
	Marine piling works and platform erection		
	Landing step pipe piling work		
Barging Point	Site clearance		
	Barging point construction and operation		

AECOM Asia Co. Ltd. 3 March 2019

Breaches of Action and Limit Levels for Air Quality

All 24-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.

All 1-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.

Breaches of Action and Limit Levels for Noise

Regular Noise Monitoring

No exceedance of Action and Limit Level of noise was recorded in the reporting month.

Breaches of Action and Limit Levels for Water

Due to the laboratory results on 31 Jan 2019 postponed, the updated breaches of Action and Limit levels for water on January 2019 were reported as below.

No Action level and Limit level exceedance were recorded at measured DO and Total PAHs.

Four (4) Action Level and four (4) Limit level were recorded exceedances at measured turbidity level in the January 2019.

Four (4) Action Level and eleven (11) Limit Level exceedances were recorded at measured SS level in the January 2019.

One (1) Action Level and sixty-nine (75) Limit Level exceedances were recorded at measured Copper Level in the January 2019.

Based on the findings from the completed IRs on 19, 22, 24, 26, 29 and 31 January 2019, the exceedance were unrelated to the Project.

Complaint, Notification of Summons and Successful Prosecution

No environmental related complaint, notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

No report changes in the reporting period.

AECOM Asia Co. Ltd. 4 March 2019

Future Key Issues

Key issues to be considered in the next three months included:

Locations	Site Activities	
Kai Tak	Pipe piling	
	Setup of excavated soil storage area	
	Watermain diversion	
	Construction of ventilation adit	
	Construction of at-grade road	
	Backfilling of soil	
	ELS strut removal	
Ma Tau Kok	Site clearance	
	TTM implementation	
	Pipe piling works	
	King post construction	
	Existing drainage diversion works	
	Fresh water pipe installation works	
	Project signboard construction	
	ELS & decking works for access shaft	
Kowloon Bay	Sheetpile and pipe pile construction for stage 1 temporary reclamation	
	Marine piling works and platform erection	
	Landing step pipe piling work	
	Wall tie installation & temporary reclamation inside marine platform	
Barging Point	Site Clearance	
	Barging point construction and operation	

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water pollution control, and waste management.

AECOM Asia Co. Ltd. 5 March 2019

1 INTRODUCTION

Gammon Construction Limited was commissioned by the Highways Department as the Civil Contractor for Works Contract HY/2014/07. AECOM Asia Company Limited (AECOM) was appointed by Gammon Construction Limited as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the eleventh monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period between 1 and 28 February 2019.

1.2 Report Structure

- 1.2.1 This monthly EM&A Report is organized as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection and Audit
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendations

2 PROJECT INFORMATION

2.1 Background

- 2.1.1 CKR is a dual 3-lane trunk road across central Kowloon linking the West Kowloon in the west and the Kai Tak Development (KTD) in the east. The CKR will be about 4.7 km long with an underground tunnel section of about 3.9 km long, in particular, there will be an underwater tunnel of about 370 m long in Kowloon Bay to the north of the To Kwa Wan Typhoon Shelter. It will connect the West Kowloon Highway at Yau Ma Tei Interchange with the road network at Kowloon Bay and the future Trunk Road T2 at KTD which will connect to the future Tseung Kwan O Lam Tin Tunnel (TKO-LTT) and Cross Bay Link (CBL). CKR, Trunk Road T2 and TKO-LTT will form a strategic highway link, namely Route 6, connecting West Kowloon and Tseung Kwan O. In addition, 3 ventilation buildings, which will be located in Ya Ma Tei, Ho Man Tin and ex-Kai Tak airport area, are proposed to ensure acceptable air quality within the tunnel.
- 2.1.2 The Environmental Impact Assessment (EIA) Report for Central Kowloon Route (Register No.: AEIAR-171/2013) was approved on 11 July 2013 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) for CKR was granted on 9 August 2013 (EP No.: EP- 457/2013) for the construction and operation. Variation of EP (VEP) was subsequently applied and the latest EP (EP No. EP-457/2013/C) was issued by the Director of Environmental Protection (DEP) on 16 January 2017. Further Environmental Permit (EP No. FEP-01/457/2013/C) for CKR Kai Tak West was issued on 28 February 2018.
- 2.1.3 The construction of the CKR had been divided into different sections. This Work Contract HY/2014/07 Kai Tak West (KTW) ("The Project") will include a road which is a trunk road, including new roads, and major extensions or improvements to existing roads; a road fully enclosed by decking above and by structure on the sides for more than 100 m; and reclamation works (including associated dredging works) more than 1 ha in size and a boundary of which is less than 100 m from an existing residential area.
- 2.1.4 The site layout plan of the Project is shown in **Figure 1.1**.

2.2 Site Description

- 2.2.1 The major construction activities under this Project include:
 - (a) construction of approximately 160m long cut-and-cover tunnel and 370m long underwater tunnel between the tunnel section at Ma Tau Kok and the depressed road of the CKR within Kai Tak Development;
 - (b) reconstruction of the seawall at Ma Tau Kok public pier, and the sloping seawall at the Former Kai Tak Airport Runway;
 - (c) construction of approximately 125m long depressed road and 200m long underpass of the CKR within Kai Tak Development;
 - (d) construction of approximately 360m long underground tunnel ventilation adit of the CKR;
 - (e) reconstruction of Kowloon City Ferry Pier Public Transport Interchange; and
 - (f) other associated works.

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarized in **Table 2.1**.

Table 2.1 Construction Activities in the reporting month

Locations	Site Activities		
Kai Tak	Pipe piling		
	Setup of excavated soil storage area		
	Watermain diversion		
	Construction of ventilation adit		
	Construction of at-grade road		
Ma Tau Kok	Site clearance		
	TTM implementation,		
	Pipe piling works,		
	King post construction		
	Existing drainage diversion works		
	Fresh water pipe installation works		
	Project signboard construction		
	ELS & decking works for access shaft		
Kowloon Bay	Sheetpile and pipe pile construction for stage 1 temporary reclamation		
	Marine piling works and platform erection		
	Landing step pipe piling work		
Barging Point	Site clearance		
	Barging point construction and operation		

2.3.2 The construction programme is presented in **Appendix A**.

2.4 Project Organization

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarized in **Table 2.2.**

Table 2.2 Contact Information of Key Personnel

Party	Role	Position	Name	Telephon e	Fax
Arup-Mott MacDonald Joint Venture	Residential Engineer (ER)	Engineer's Representative	Mr. Jeffrey Lau	2268 3640	2268 3954
ERM	Independent Environmental Checker (IEC)	Independent Environmental Checker	Ms. Mandy To	2271 3313	2723 5660
		Contracts Manager	Mr. Alan Yan	2516 8823	2516 6260
Gammon	Contractor	Environmental Manager	Ms Michelle Tang	9267 8866	2516 6260
		Environmental Officer	Ms. Phoebe Ng	9869 1105	2510 0200
AECOM	Contractor's Environmental Team (ET)	ET Leader	Mr. Y T Tang	3922 9392	2317 7609

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting month are summarized in **Table 2.3**.

Table 2.3 Status of Environmental Licenses, Notifications and Permits

Permit / License No.	Valid Period			Remarks	
/ Notification/ Reference No.	From	To Status			
Further Environmenta	l Permit	•			
FEP-01/457/2013/C	28 Feb 2018	End of Project	Valid		
Wastewater Discharge	e License				
WT00030290-2018	22 Mar 2018	31 May 2023	Valid	Ma Tau Kok	
WT00030668-2018	27 Apr 2018	30 Apr 2023	Valid	Site Office at Kai Tak West	
WT00030358-2018	27 Apr 2018	30 Apr 2023	Valid	Kai Tak West	
WT00030333-2018	27 Apr 2018	30 Apr 2023	Valid	Barging Point at Portions 4B & 4C	
WT00030330-2018	27 Apr 2018	30 Apr 2023	Valid	Kowloon Bay	
Construction Noise Po	ermit				
GW-RE0925-18	8 Jan 2019	7 Mar 2019	Valid	Kai Tak General Works	
GW-RE0188-18	1 Sep 2018	28 Feb 2019	Valid until 28 Feb 2019	General Works at Kai Tak Barging Point	
GW-RE0125-19	28 Feb 2019	27 Aug 2019	Valid	General Works at Kai Tak Barging Point	
PP-RE0045-18	6 Oct 2018	30 Mar 2019	Valid	Percussive Piling at Kai Tak Area (at grade road and underpass)	
PP-RE0052-18	20 Nov 2018	18 May 2019	Valid	Percussive Piling at Stage 1 Temporary Reclamation Area	
Chemical Waste Prod	ucer Registratio	n			
5118-247-G2347-47	30 Jan 2018	End of Project	Valid		
5118-247-G2347-48	30 Jan 2018	End of Project	Valid		
Marine Dumping Pern	nit				
EP/MD/19-045	20 Nov 18	19-May-19	Valid	Sediments requiring Type 1 - Open Sea Disposal	
EP/MD/19-091	23 Jan 19	22 Feb 19	Valid until 22 Feb 19	Sediments requiring Type 1 (Dedicated Site) and Type 2 Confined Marine Disposal	
Billing Account for Construction Waste Disposal					
7029909	22 Jan 2018	End of Project	Account Active		
Notification Under Air	Pollution Conti	ol (Construction	n Dust) Regulation		
429442	5 Jan 2018	5 Jul 2025	Notified		

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Construction Dust Monitoring

Monitoring Requirements

3.1.1 In accordance with the approved EM&A Manual, measurement of 24-hour and 1-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out for at least once every 6 days, and 1-hour TSP monitoring should be done at least 3 times every 6 days while the highest dust impact is expected. The Action and Limit Levels of the air quality monitoring is provided in **Appendix D**.

Monitoring Equipment

- 3.1.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at the designated monitoring station. The HVS meets all the requirements of the EM&A Manual.
- 3.1.3 A portable direct reading dust meter was used to carry out the 1-hour TSP monitoring.
- 3.1.4 Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (24-hour TSP)	Tisch Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. TE-5170)
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3B & LD-3)

Monitoring Locations

3.1.5 The monitoring station for construction dust monitoring pertinent to the Project has been identified based on the approved EM&A Manual for the Project. The location of the construction dust monitoring station is summarized in **Table 3.2** and shown in **Figure 3.1**.

Table 3.2 Location of Construction Dust Monitoring Station

Location	Monitoring Station	Description
E-A14a ^[1]	Block B of Merit Industrial Centre	Rooftop (13/F)

Note:

Monitoring Methodology

- 3.1.6 24-hour TSP Monitoring
 - (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS as far as practicable:-
 - A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) Two samplers should not be placed less than 2m apart from each other;
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.

AECOM Asia Co. Ltd. 11 March 2019

^[1] The air monitoring station proposed in the EM&A Manual (i.e. Wyler Gardens with ID: E-A14) was not available for impact dust monitoring, therefore impact monitoring was conducted at E-A14a as an alternative which was agreed by the ER, IEC and EPD.

- (vii) Airflow around the sampler was unrestricted.
- (viii) The sampler was located more than 20 meters from any dripline.
- (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
- Permission was obtained to set up the samplers and access to the monitoring station.
- (xi) A secured supply of electricity was obtained to operate the sampler.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix E**.

3.1.7 1-hour TSP Monitoring

(a) Measuring Procedures

AECOM Asia Co. Ltd. 12 March 2019

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG]
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.
- (b) Maintenance and Calibration
 - (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.8 The schedule for environmental monitoring in February 2019 is provided in **Appendix F**.

3.2 Construction Noise Monitoring

Monitoring Requirements

3.2.1 In accordance with the EM&A Manual, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.3** summarizes the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit Levels of the noise monitoring is provided in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. L_{eq} , L_{10} and L_{90} would be recorded.	At least once per week

Monitoring Equipment

3.2.2 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.4**.

Table 3.4 Noise Monitoring Equipment for Regular Noise Monitoring

Equipment	Brand and Model
Integrated Sound Level Meter	B&K (Model No. 2238)
Acoustic Calibrator	B&K (Model No. 4231)

Monitoring Locations

3.2.3 The monitoring stations for construction noise monitoring pertinent to the Project have been identified based on the approved EM&A Manual for the Project. Locations of the noise monitoring stations are summarized in **Table 3.5** and shown in **Figure 3.2**.

Table 3.5 Noise Monitoring Stations during Construction Phase

Location	Monitoring Station	Description	Measurement
E-N12a [1]	19 Hing Yan Street	Rooftop (9/F)	Façade
E-N21a [1]	Block B of Merit Industrial Centre	Rooftop (13/F)	Free field [2]

Notes:

Monitoring Parameters, Frequency and Duration

3.2.4 **Table 3.6** summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

AECOM Asia Co. Ltd. 14 March 2019

The noise monitoring stations proposed in the EM&A Manual (i.e. Grand Waterfront Tower 3 with ID: E-N12 and Hang Chien Court Block J with ID: E-N21) were not available for impact noise monitoring, therefore impact monitoring was conducted at E-N12a and E-N21a as an alternative which was agreed by the ER, IEC and EPD.
 A correction of +3 dB(A) was made to the free field measurements.

Table 3.6 Noise Monitoring Parameters, Frequency and Duration

Location	Parameter and Duration	Frequency
E-N12a and E-N21a	30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

Monitoring Methodology

3.2.5 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground.
- (b) Facade measurement was made at E-N12a.
- (c) Free field measurements was made at monitoring location E-N21a. A correction of +3 dB(A) shall be made to the free field measurements.
- (d) The battery condition was checked to ensure the correct functioning of the meter.
- (e) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 0700 1900 on normal weekdays.
- (f) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (g) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (h) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (i) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.2.6 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.2.7 The schedule for environmental monitoring in February 2019 is provided in **Appendix F**.

AECOM Asia Co. Ltd. 15 March 2019

3.3 Construction Water Monitoring

Monitoring Requirements

- 3.3.1 According to the Contractor information, intermittent dredging activity was carried out from November 2018 to January 2019. No water quality monitoring was conducted after January 2019. However, the data on 31 January 2019 was postponed, the updated water quality data on January 2019 was reported in following section.
- 3.3.2 In accordance with the approval EM&A Manual, the impact monitoring shall be conducted during dredging period. The monitoring shall normally be established by measuring the Dissolved Oxygen (DO), temperature, turbidity, pH, salinity, Suspended Solids (SS) and copper level and total PAHs at all designated locations. The Action and Limit Levels of the water quality monitoring is provided in **Appendix D**.
- 3.3.3 The measurement shall be taken at all designated monitoring stations including control stations, 3 days per week, at mid-flood and mid-ebb tides. Tidal range of individual flood and ebb tides should be not less than 0.5m. The interval between two sets of monitoring shall not be less than 36 hours.
- 3.3.4 All the monitoring shall be taken at 3 water depths, namely 1m below water surface, mid-depth station and 1m above sea bed, except where the water depth less than 6m, the mid-depth station may be omitted. Should the water depth be less than 3m, only the mid-depth station will be monitored.

Monitoring Equipment

3.3.5 The brand and model of water quality monitoring equipment is given in **Table 3.7.**

Table 3.7 Water Quality Monitoring Equipment

Equipment	Brand and Model	Detection Limit
Dissolved Oxygen Meter		0 – 20 mg/L and 0-200% saturation
Water Temperature Meter	YSI 6820	0-45 degree Celsius
Salinity Meter		0-40 parts per thousand (ppt)
Turbiditimeter		0-1000 NTU
pH meter		pH 0.0 to 14.0
Water Sampler	Kahlsico Water Sampler	N.A
Echo Sounder	Eagle Cuda-168	N.A
Global Positioning System	JRC DGPS 224 Model JLR-4341 with J-NAV 500 Model NWZ4551	N.A

Monitoring Locations

3.3.6 In accordance with the Updated EM&A Manual, the water monitoring stations for baseline water quality monitoring is presented in **Table 3.8** and shown in **Figure 3.3**.

Table 3.8 Impact Water Quality Monitoring Stations

Type of Station	Station	Location	Easting	Northing
Water Quality		Planned Kai Tak Cooling Water 839050 819 Intake (subject to its implementation)		819377
Monitoring Station	IS2	To Kwa Wan Typhoon Shelter	838450	819399
	IS3	Tai Wan Salt Water Intake	837948	818202

AECOM Asia Co. Ltd. 16 March 2019

Type of Station	Station	Location	Easting	Northing
	C1	Control Station 1	837787	817712
Control Station	C2	Control Station 2	838237	818804
	C3	Control Station 3	839105	819019

Monitoring Parameters, Frequency and Duration

3.3.7 The monitoring parameters, frequency and duration of water quality monitoring are summarized in **Table 3.9**.

Table 3.9 Water Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
Dissolved Oxygen, Temperature, Turbidity, pH value, Salinity, Suspended Solids, Copper and Total PAH	Three days per week, at mid-flood and mid-ebb tides

Monitoring Methodology

- 3.3.8 The water quality monitoring procedures are presented in the following:
 - All monitoring equipment were checked and calibrated before use. Responses of sensors and electrodes were also checked with certified standard solutions before each use.
 - The interval between 2 sets of monitoring was not less than 36 hours.
 - Individual flood and ebb tides not less than 0.5m.
 - At least 3 replicate in-situ measurements and water sampling were carried out in each sampling event.
 - Measurements were taken at 3 water depths, namely 1m below water surface, mid-depth and 1m above sea bed, except where the water depth less than 6m, the mid-depth station may be omitted. Should the water depth be less than 3m, only the mid-depth station was monitored.
 - Analysis of suspended solids was carried out by ALS Technichem (HK) Pty Ltd. Sufficient
 water samples were collected at the monitoring stations for carrying out the laboratory
 analysis. The analysis followed the standard methods as described in APHA Standard
 Methods for the Examination of Water and Wastewater, 19th Edition (APHA 2540D for SS).
 - Analysis of copper was carried out by ALS Technichem (HK) Pty Ltd. Sufficient water samples were collected at the monitoring stations for carrying out the laboratory analysis. The analysis followed the standard methods as described in USEPA Method for inductively coupled plasma-mass spectrometry (ICP-MS), Revision 1 (ICP-MS USEPA 6020A for copper).
 - Analysis of total polycyclic aromatic hydrocarbon (PAHs) was carried out by ALS Technichem (HK) Pty Ltd. Sufficient water samples were collected at the monitoring stations for carrying out the laboratory analysis. The analysis followed the standard methods as described in USEPA Methods for Gas Chromatography-Mass Spectrometry Detector, Revision 3, (GC-MSD USEPA 3510C,USEPA 3630C,USEPA 8270C for total PAHs).
 - Water samples for suspended solids measurements were collected in high density polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to a HOKLAS laboratory as soon as possible after collection.
- 3.3.9 All monitoring equipment were certified by a laboratory accredited under HOKLAS. Calibration certificates of all monitoring equipment are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.3.10 According to the Contractor information, intermittent dredging activity was carried out from November 2018 to January 2019. No water quality monitoring was conducted after January 2019.

AECOM Asia Co. Ltd. 17 March 2019

3.4 Landscape and Visual

3.4.1 As per the EM&A Manuals, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6.**

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C.** Status of required submissions under the EP during the reporting period is summarised in **Table 4.1**.

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4 of EP- 457/2013/C and Condition 3.4 of FEP-01/457/2013/C	Monthly EM&A Report for January 2019	14 February 2019
Condition 2.9 of EP- 457/2013/C and Condition 2.9 of FEP-01/457/2013/C	Construction Noise Mitigation Measure Plan (Version D)	18 February 2019

5 MONITORING RESULTS

5.1 Construction Dust Monitoring

5.1.1 The monitoring results for 24-hour TSP and 1-hour TSP are summarized in **Table 5.1** and **Table 5.2** respectively. Detailed air quality monitoring results and daily extract of meteorological observations are presented in **Appendix G**.

Table 5.1 Summary of 24-hour TSP Monitoring Result in the Reporting Period

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
E-A14a	42.1	17.5 – 54.3	197.3	260

Table 5.2 Summary of 1-hour TSP Monitoring Result in the Reporting Period

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)	
E-A14a	68.6	62.9 – 71.7	302.4	500	

- 5.1.2 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring at the monitoring location in the reporting month.
- 5.1.3 No Action and Limit Level exceedance was recorded for 1-hour TSP monitoring at the monitoring location in the reporting month.
- 5.1.4 The event and action plan is annexed in **Appendix K**.
- 5.1.5 Major dust sources during the monitoring included construction dust and nearby traffic emission.

5.2 Regular Construction Noise Monitoring

5.2.1 The monitoring results for noise are summarized in **Table 5.3** and the monitoring data is provided in **Appendix H**.

Table 5.3 Summary of Construction Noise Monitoring Results in the Reporting Period

ID	Range, dB(A), L _{eq (30 mins)}	Limit Level, dB(A), L _{eq (30 mins)}
E-N12a	60.1 – 62.6	75
E-N21a	62.9 – 65.5	75

- 5.2.2 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 5.2.3 No Limit Level exceedance of noise was recorded at the monitoring station in the reporting month.
- 5.2.4 The event and action plan is annexed in **Appendix K**.
- 5.2.5 Major noise sources during the monitoring included construction noise from the Project site and nearby traffic noise.

AECOM Asia Co. Ltd. 19 March 2019

5.3 Construction Water Monitoring

- 5.3.1 The impact water quality monitoring for 6 locations were carried out 3 days per week in January 2019. The impact monitoring data are presented in **Appendix I**.
- 5.3.2 The weather condition during the monitoring period were mainly sunny and fine and occasionally cloudy and rainy. No major pollution source and extreme weather, which might affect the results, was observed in January 2019.
- 5.3.3 The impact water quality monitoring results are summarized in **Table 5.4**.

Table 5.4 Summary of Impact Water Quality Monitoring Results

		Parameters								
Locations		Temperature	рН		d Oxygen g/L)	Turbidity	Salinity	Suspended Solids*	Copper*	Total
		(°C)	value	Surface & Middle	Bottom	(NTU)	(ppt)	(mg/L)	(μg/L)	PAHs* (μg/L)
	Avg.	18.33	8.17	6.87	6.80	2.40	32.87	2.98	5.36	1.60
CS1	Min.	17.64	7.97	5.65	5.64	1.30	31.83	<0.5	<1.00	<1.60
	Max.	18.85	8.39	7.84	7.70	3.60	33.78	7.60	9.00	<1.60
	Avg.	18.35	8.17	6.84	6.76	2.39	32.86	3.05	5.44	1.60
CS2	Min.	17.64	7.98	5.67	5.66	1.20	31.84	0.50	<1.00	<1.60
	Max.	18.95	8.38	7.87	7.31	5.40	33.79	7.90	10.00	<1.60
	Avg.	18.36	8.17	6.80	6.74	2.32	32.86	3.17	5.46	1.60
CS3	Min.	17.62	7.98	5.54	5.51	1.10	31.84	0.80	<1.00	<1.60
	Max.	18.95	8.39	7.52	7.29	3.80	33.79	8.90	9.00	<1.60
	Avg.	18.37	8.17	6.79	6.74	2.38	32.85	3.14	5.42	1.60
IS1	Min.	17.62	7.98	5.55	5.53	1.40	31.84	0.70	<1.00	<1.60
	Max.	19.05	8.39	7.28	7.23	3.50	33.79	8.90	9.00	<1.60
	Avg.	18.37	8.18	6.82	6.75	2.33	32.85	3.14	5.45	1.60
IS2	Min.	17.62	7.98	5.57	5.59	1.20	31.84	0.60	1.00	<1.60
	Max.	19.06	8.42	7.46	7.25	3.40	33.79	9.00	9.00	<1.60
	Avg.	18.34	8.17	6.85	6.79	2.40	32.86	2.92	5.47	1.60
IS3	Min.	17.64	7.97	5.69	5.69	1.50	31.84	<0.5	<1.00	<1.60
	Max.	18.89	8.38	7.54	7.36	4.00	33.77	10.00	9.00	<1.60

5.3.4 Exceedances were recorded for turbidity, suspended solids and copper in January 2019. Number of exceedances recorded in the reporting month at each impact station are summarised in **Table 5.5** and **Appendix J**.

Table 5.5 Summary of Water Quality Exceedances

Station	Station Exceedance Level	DO	(S&M)	DO (E	Bottom)	Tur	bidity	;	SS*	Col	pper*		I PAHs g/L)*	Т	otal
		Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood
IS1	Action	0	0	0	0	2	1	3	0	0	0	0	0	5	1
101	Limit	0	0	0	0	0	1	2	2	13	12	0	0	15	15
IS2	Action	0	0	0	0	0	0	0	0	0	1	0	0	0	1
132	Limit	0	0	0	0	0	1	2	2	13	12	0	0	15	15
100	Action	0	0	0	0	0	1	1	0	0	0	0	0	1	1
IS3	Limit	0	0	0	0	1	1	2	1	13	12	0	0	16	14
Total	Action	0	0	0	0	2	2	4	0	0	1	0	0		9
	Limit	0	0	0	0	1	3	6	5	39	36	0	0		90

5.3.5 The event and action plan is annexed in **Appendix K**.

5.4 Waste Management

- 5.4.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.4.2 As advised by the Contractor, Total 200 m³ of inert C&D material was generated, 8 m³ were disposed of as public fill and 192 m³ were reused in other project in the reporting month. 15,290 kg general refuse was generated and sent to NENT Landfill in the reporting month. No metals, plastics and paper/cardboard packaging were collected by recycle contractor in the reporting month. No chemical waste was collected by licensed contractor in the reporting period. No Type 1, 2 and 3 Marine sediment were disposed at Confined Marine Disposal Facility to the East of Sha Chau. The waste flow table is annexed in **Appendix M**.
- 5.4.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.4.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.5 Landscape and Visual

5.5.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 13 and 27 February 2019. A summary of the site inspection is provided in **Appendix C**. The observations and recommendations made during the site inspections are presented in **Table 6.1**.

AECOM Asia Co. Ltd. 21 March 2019

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.
- 6.1.2 In the reporting month, 4 site inspections were carried out on 4, 13, 20 and 27 February 2019. Joint inspections with the IEC, ER, the Contractor and the ET were conducted on 20 February 2019. In addition, joint inspection with EPD, ER and the Contractor were conducted on 25 February 2019 in the reporting month. No non-compliance was recorded during the site inspection. Details of observations recorded during the site inspections are presented in **Table 6.1.**

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
	13 February 2019	Reminder: • The Contractor was reminded to provide proper cover for the cement bags storage. Reminder: • The Contractor was reminded to enhance the water spraying on the haul	The item was rectified by the Contractor on 14 February 2019. The item was rectified by the Contractor on 16
Air Quality	27 February 2019	road near the pervious recycling facility at Kai Tak. Reminder: The Contractor was reminded to replace the decolored NRMM label on the mobile crane at Ma Tau Kok.	The item was rectified by the Contractor on 28 February 2019.
	30 January 2019	Reminder: • Water spraying lorry was observed during the site inspection. However, the contractor was also reminded to enhance the water spraying on the haul road at Kai Tak.	The item was rectified by the Contractor on 4 February 2019.
Noise	20 February 2019	Reminder: • The Contractor was reminded to erect the acoustic sheet properly at Ma Tau Kok.	The item was rectified by the Contractor on 22 February 2019
Water	20 February 2019	Reminder: • The Contractor was reminded to clean up the oil stain near the silt curtain.	The item was rectified by the Contractor on 21 February 2019.
Quality	27 February 2019	Reminder: • The Contractor was reminded to improve the part of the bunding at Landing step area.	The item was rectified by the Contractor on 28 February 2019.
Waste/ Chemical Management	13 February 2019	Oil stain was observed outside the drip tray at Kai Tak. The Contractor was reminded to remove the oil stain and improve handling.	The item was rectified by the Contractor on 15 February 2019.
Landscape & Visual	Nil	Nil	Nil
Permits/ Licenses	Nil	Nil	Nil

- 6.1.3 No follow-up actions requested by Contractor's ET during the site inspection on 4 February 2019.
- 6.1.4 All follow-up actions requested by Contractor's ET during the site inspection were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting period. No follow-up action requested by EPD during the site inspection in the reporting month.

AECOM Asia Co. Ltd. 22 March 2019

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 All 24-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.
- 7.1.2 All 1-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month
- 7.1.3 No Action and Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 7.1.4 According to the updated water quality data on January 2019, no Action level and Limit level exceedance were recorded at measured DO and Total PAHs.
- 7.1.5 Four (4) Action Level and four (4) Limit level were recorded exceedances at measured turbidity level in January 2019.
- 7.1.6 Four (4) Action Level and eleven (11) Limit Level exceedances were recorded at measured SS level in January 2019.
- 7.1.7 One (1) Action Level and sixty-nine (75) Limit Level exceedances were recorded at measured Copper Level in January 2019.
- 7.1.8 Based on the findings from the completed IRs on 19, 22, 24, 26, 29 and 31 January 2019, the exceedance were unrelated to the Project.

7.2 Summary of Environmental Non-Compliance

7.2.1 No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaints

- 7.3.1 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 7.3.2 No environmental related complaint, notification of summons and successful prosecution were received in the reporting month.

7.4 Summary of Environmental Summon and Successful Prosecutions

7.4.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix L**.

8 FUTURE KEY ISSUES

8.1 Construction Programme for the Next Three Month

8.1.1 The major construction works between March and May 2019 is provided in **Table 8.1**.

Table 8.1 Construction Activities in the coming three month

Locations	Site Activities
Kai Tak	Pipe piling
	Setup of excavated soil storage area
	Watermain diversion
	Construction of ventilation adit
	Construction of at-grade road
	Backfilling of soil
	ELS strut removal
Ma Tau Kok	Site clearance
	TTM implementation
	Pipe piling works
	King post construction
	Existing drainage diversion works
	Fresh water pipe installation works
	Project signboard construction
	ELS & decking works for access shaft
Kowloon Bay	Sheetpile and pipe pile construction for stage 1 temporary reclamation
	Marine piling works and platform erection
	Landing step pipe piling work
	Wall tie installation & temporary reclamation inside marine platform
Barging Point	Site Clearance
	Barging point construction and operation

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, and waste management.

8.3 Monitoring Schedule for the Coming Month

8.3.1 The tentative schedule for environmental monitoring in March 2019 is provided in **Appendix F**.

AECOM Asia Co. Ltd. 24 March 2019

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 24-hour TSP and noise monitoring were carried out in the reporting month.
- 9.1.2 All 24-hour TSP monitoring results complied with the Action / Limit Level at in the reporting month.
- 9.1.3 All 1-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.
- 9.1.4 No Action and Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 9.1.5 According to the updated water quality data on January 2019, no Action level and Limit level exceedance were recorded at measured DO and Total PAHs.
- 9.1.6 Four (4) Action Level and four (4) Limit level were recorded exceedances at measured turbidity level in January 2019.
- 9.1.7 Four (4) Action Level and eleven (11) Limit Level exceedances were recorded at measured SS level in January 2019.
- 9.1.8 One (1) Action Level and sixty-nine (75) Limit Level exceedances were recorded at measured Copper Level in January 2019.
- 9.1.9 Based on the findings from the completed IRs on 19, 22, 24, 26, 29 and 31 January 2019, the exceedance were unrelated to the Project.
- 9.1.10 4 nos. of environmental site inspections and 1 nos. of the site inspections with EPD were carried out in February 2019. Recommendations on remedial actions were given by ET and IEC to the Contractor for the deficiencies identified during the site audit. No non-compliance was recorded during the EPD site inspection.
- 9.1.11 No environmental related complaint, notification of summons and successful prosecution were received in the reporting month.

9.2 Recommendations

9.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

- The Contractor was reminded to spray water regularly on the haul road;
- The Contractor was reminded to provide proper cover for the cement bags storage; and
- The Contractor was reminded to display the NRMM label on the conspicuous space of machinery.

Construction Noise Impact

The Contractor was reminded to erect the acoustic sheet properly.

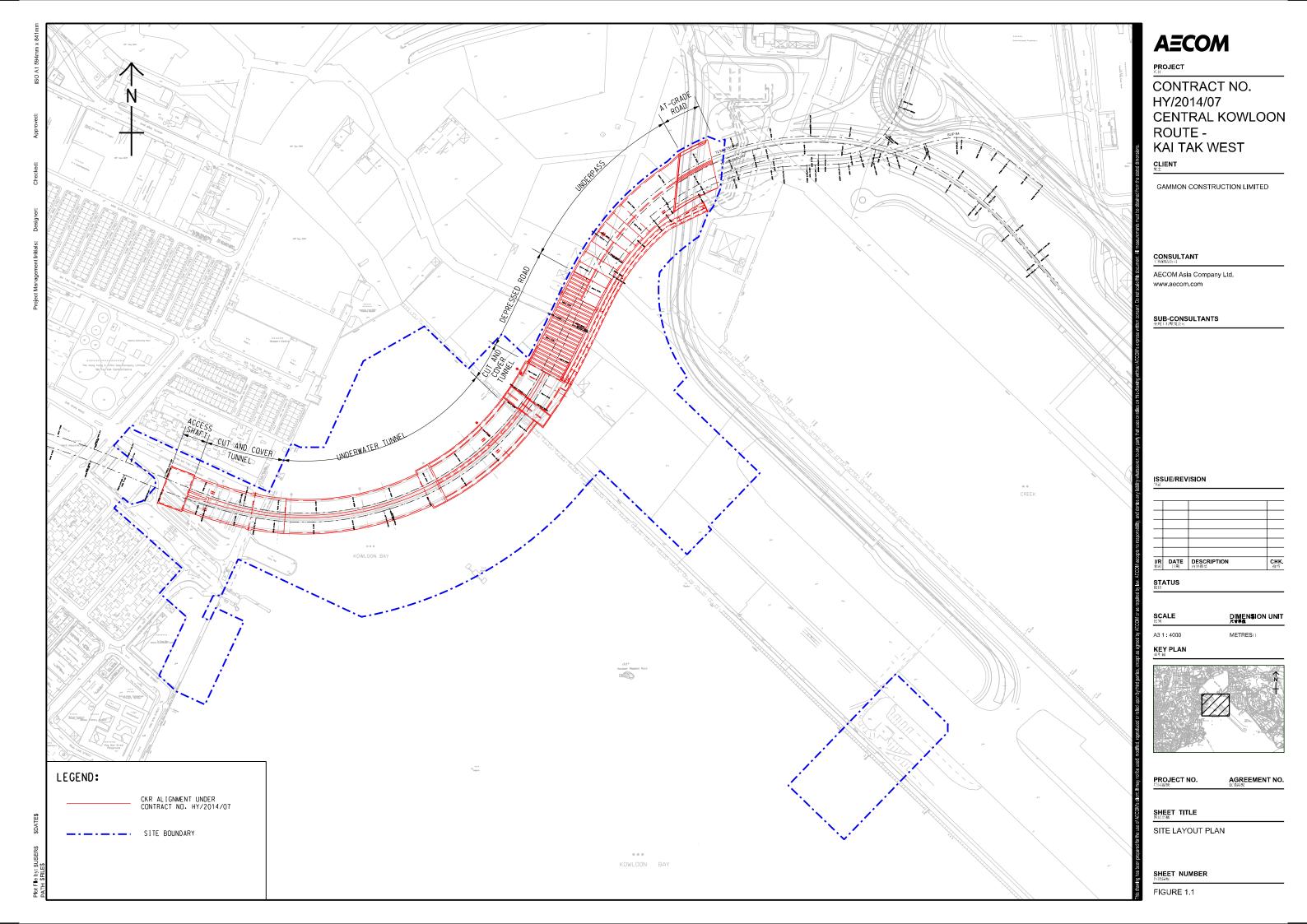
Water Quality Impact

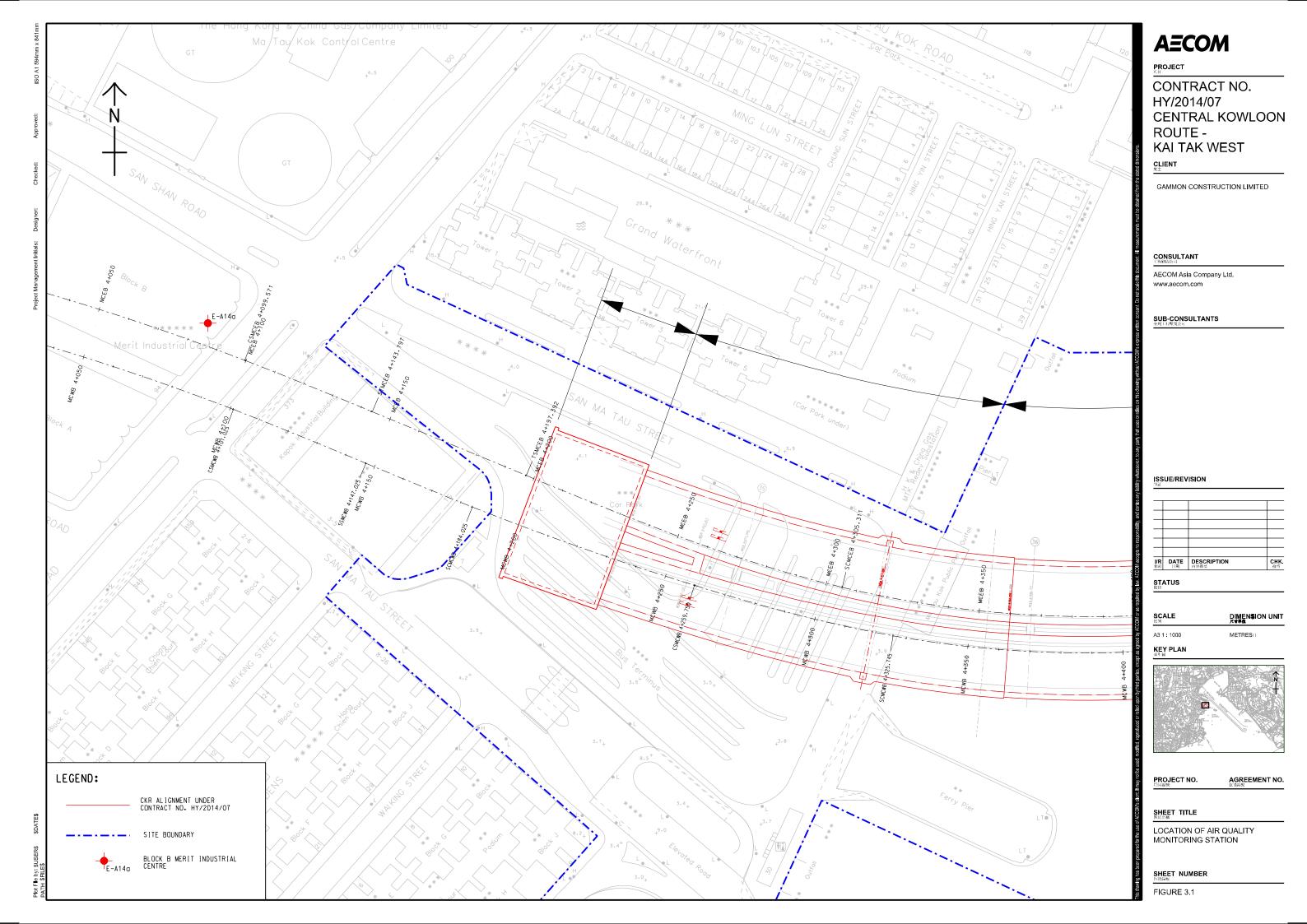
- The Contractor was reminded to clean up the oil stain near the silt curtain; and
- The Contractor was reminded to improve the part of the bunding at Landing step area.

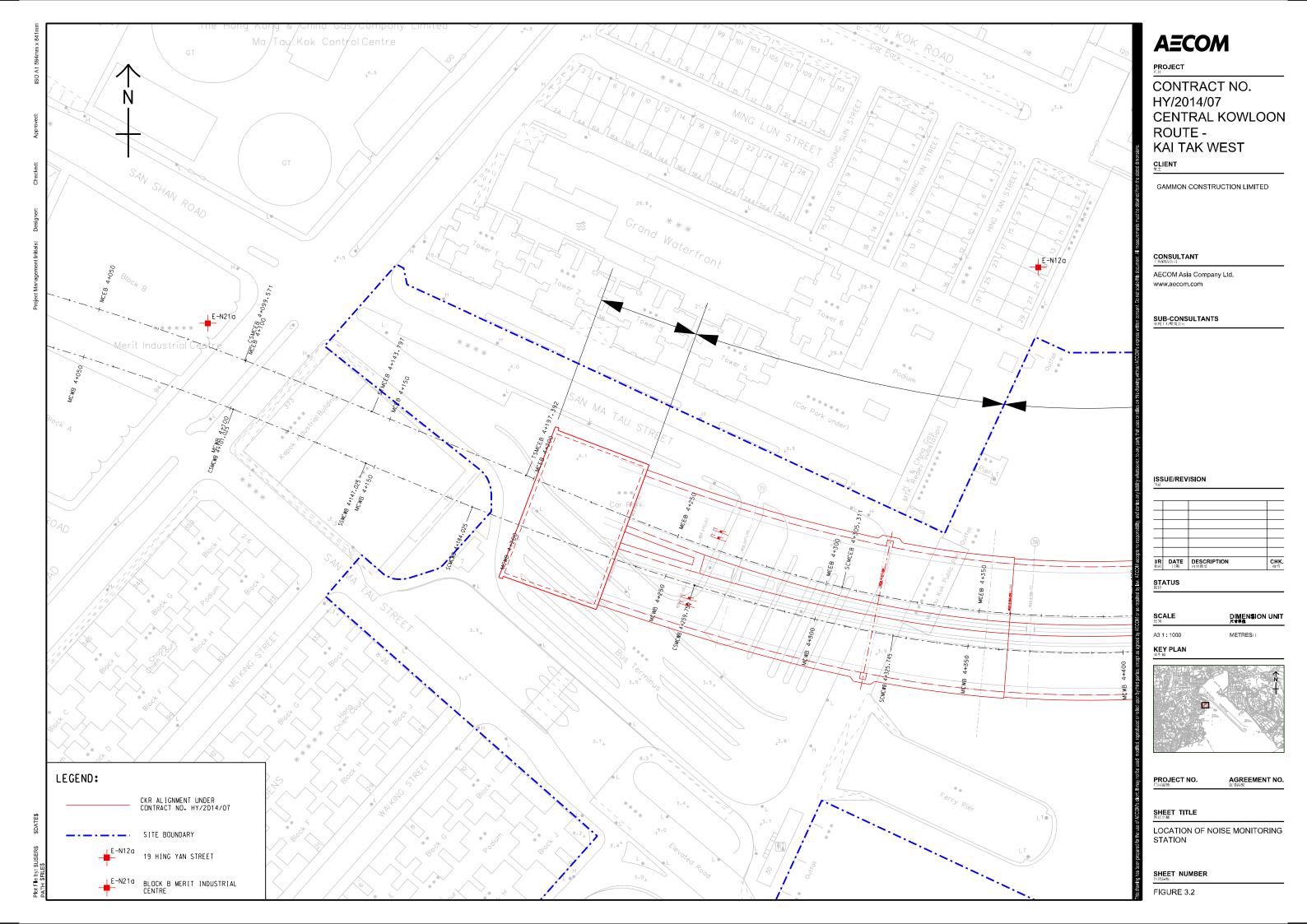
AECOM Asia Co. Ltd. 25 March 2019

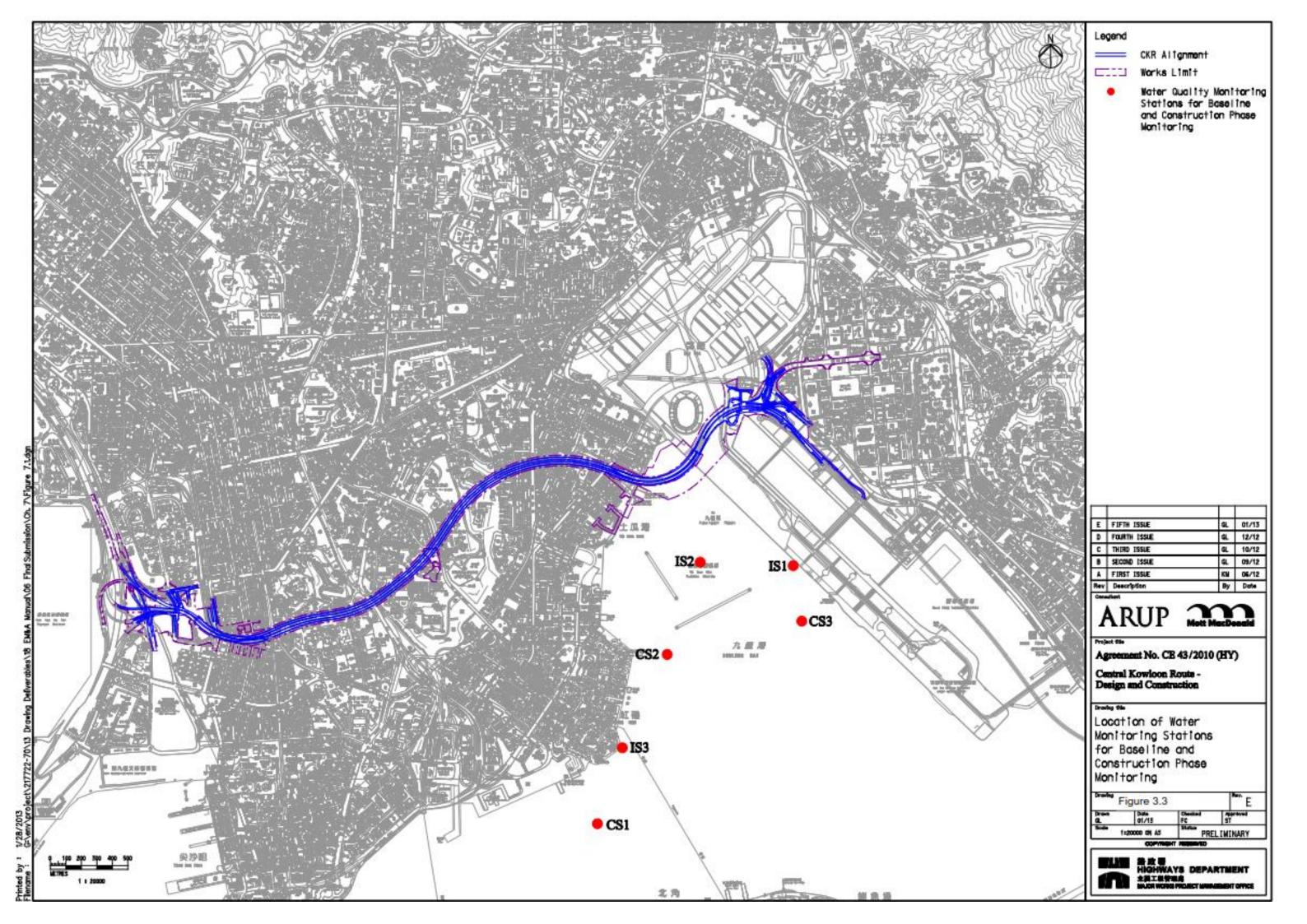
Chemical and Waste Management

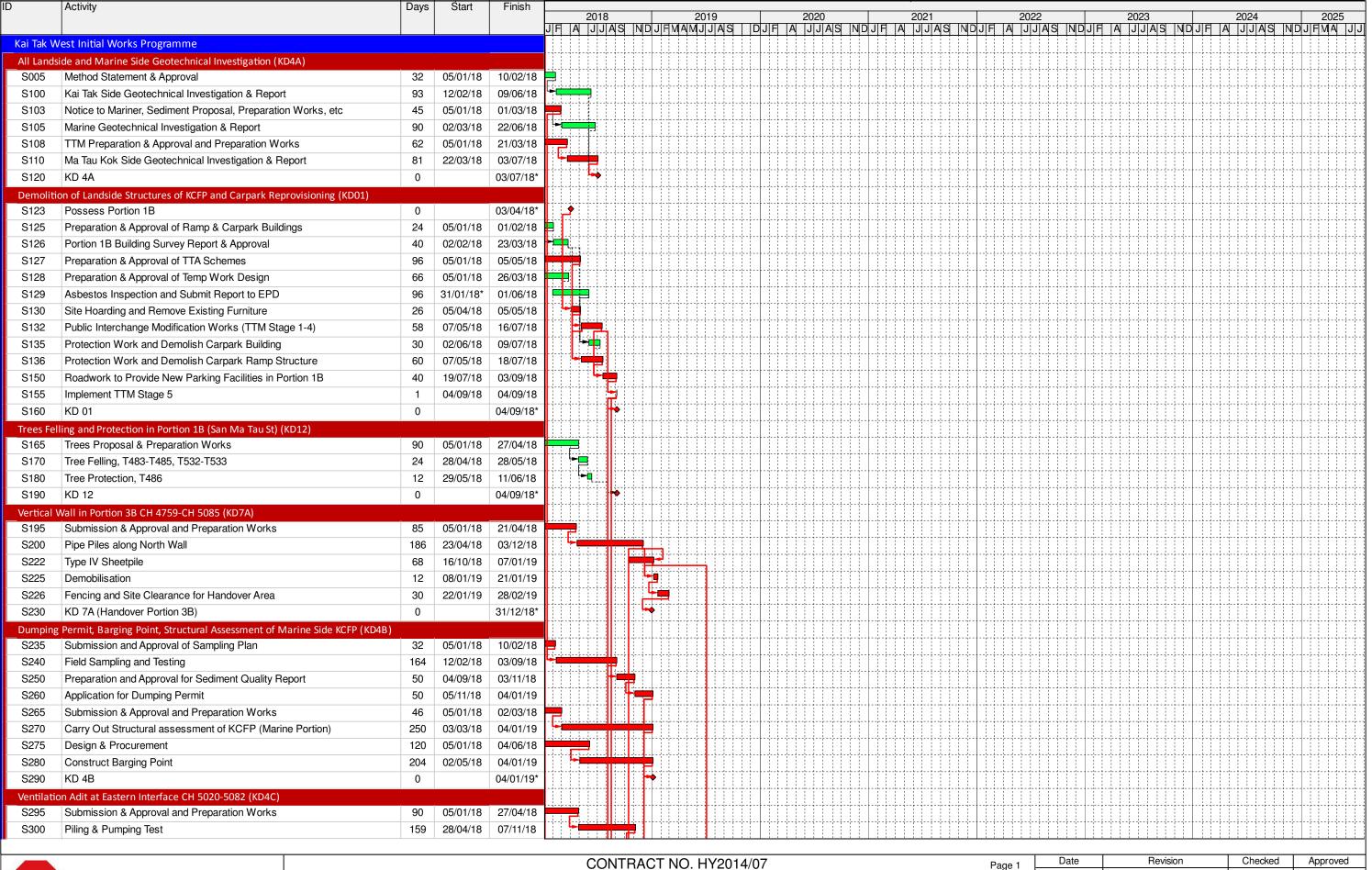
• The Contractor was reminded to remove the oil stain and improve handling.


Landscape & Visual Impact


• No specific observation was identified in the reporting month.

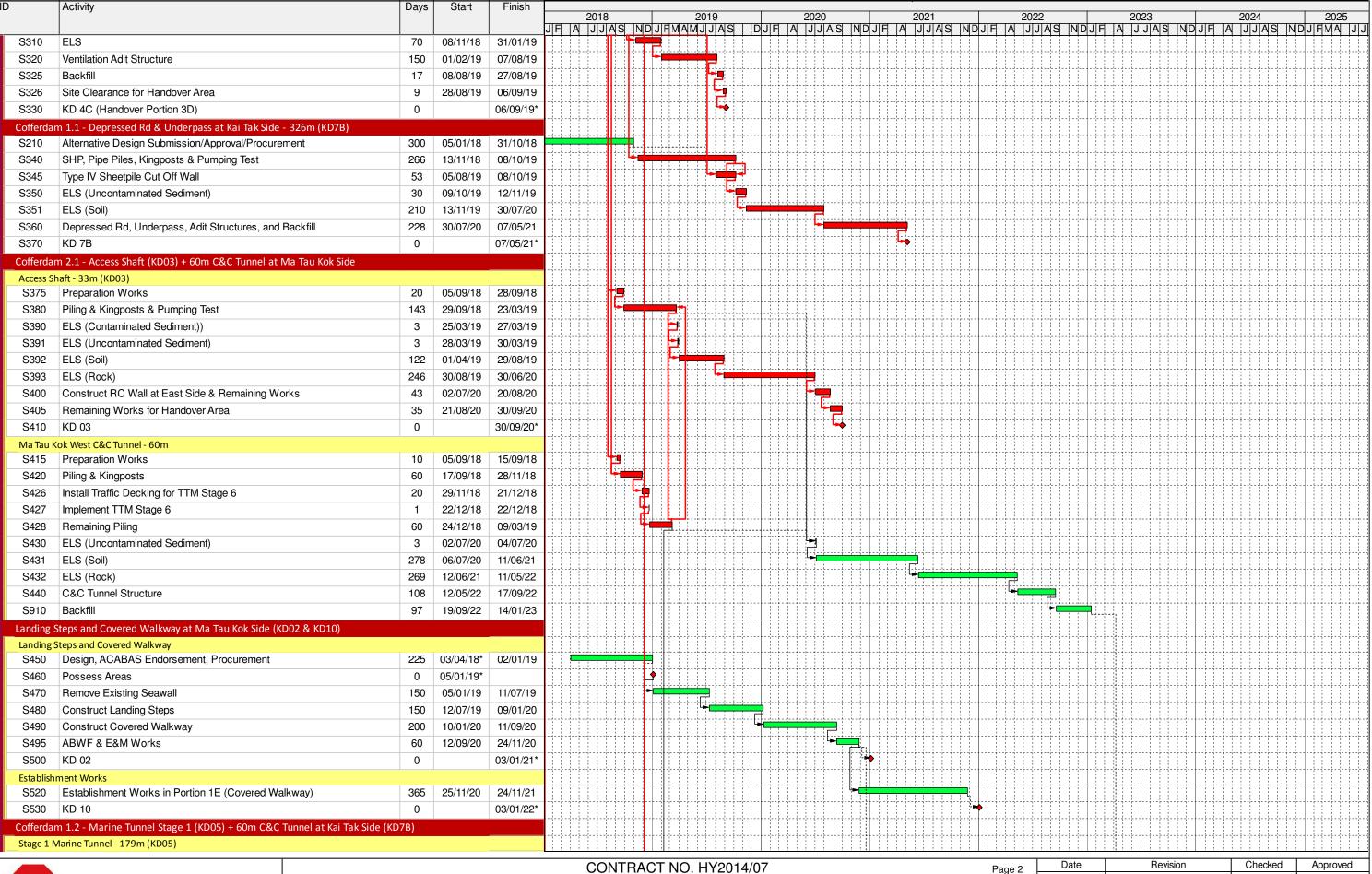

Permits/licenses


• No specific observation was identified in the reporting month.



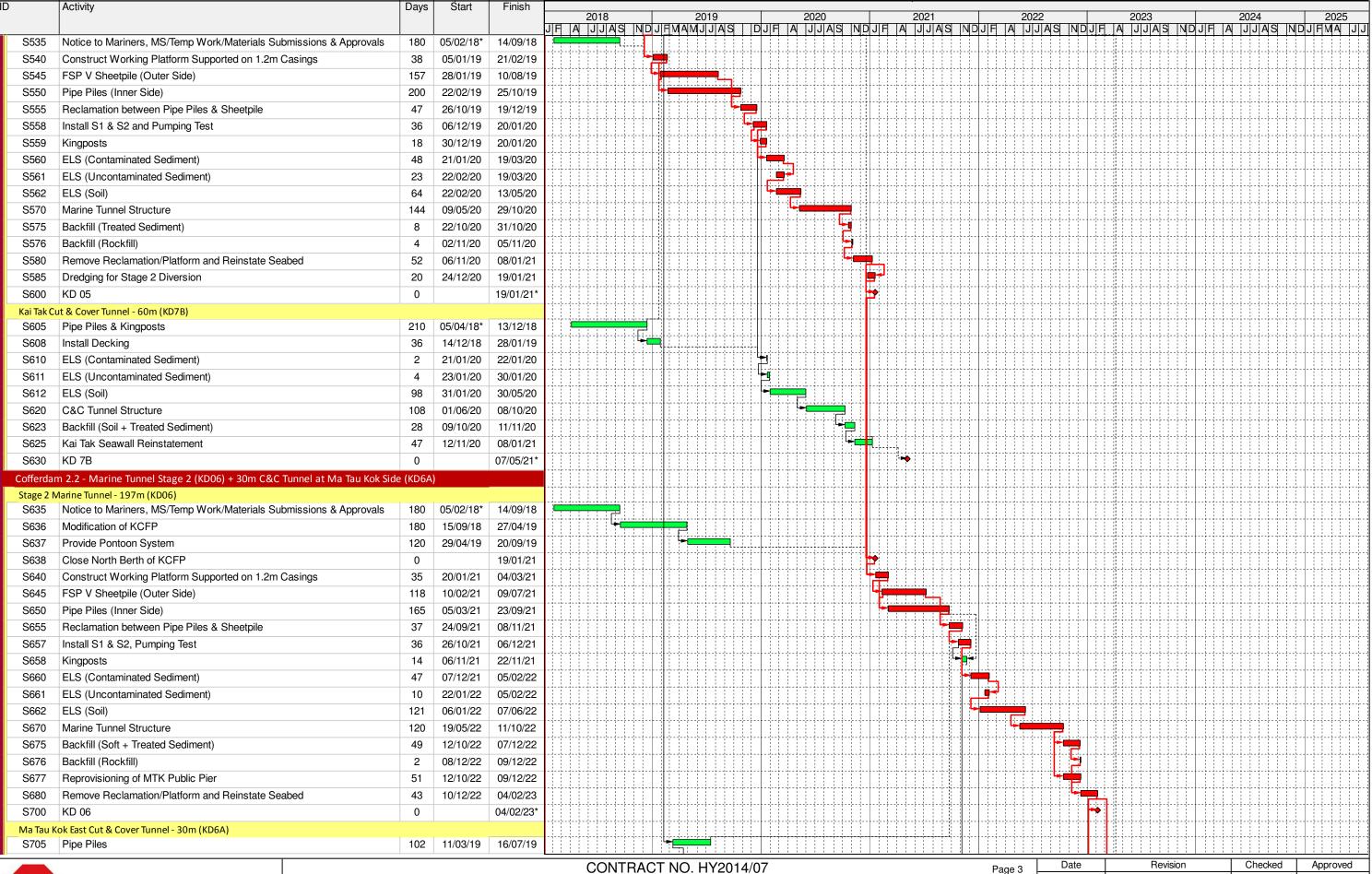
APPENDIX A

Construction Programme



CONTRACT NO. HY2014/07

CENTRAL KOWLOON ROUTE - KAI TAK WEST
INITIAL WORKS PROGRAMME (IWP)


Date	Revision	Checked	Approved
05 Jan 18	IWP		

CENTRAL KOWLOON ROUTE - KAI TAK WEST
INITIAL WORKS PROGRAMME (IWP)

Date	Revision	Checked	Approved
05 Jan 18	IWP		

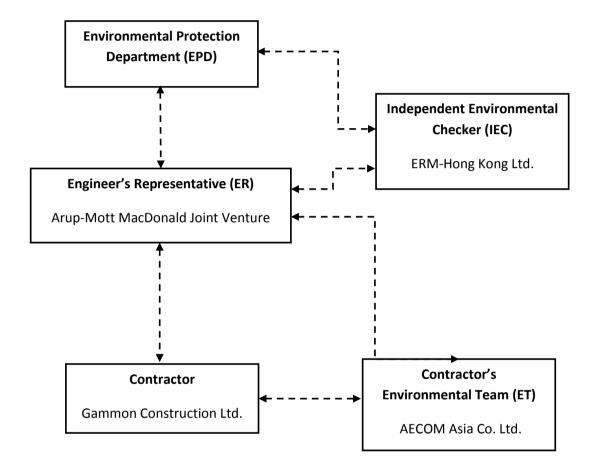
CENTRAL KOWLOON ROUTE - KAI TAK WEST
INITIAL WORKS PROGRAMME (IWP)

Date	Revision	Checked	Approved
05 Jan 18	IWP		

)	Activity	Days	Start	Finish		0010		0040		0000		0004		0000			2000			0004		0005
						2018		2019 J F <u>M</u> AMJ J AS	DUE	2020	AISL IND LIE	2021 - IAI J.I.IIAIS	NDJE	2022	SUNDUL	2 FI ALT	.023 .11.11AIS	IND.		2024 . . A S		2025 MAL.
S706	Kingposts	16	16/05/19	03/06/19			O IND		10011 1	1 00	AIS INDIO		INDUIT	14 101014	S INDOI		د امامان	IND	רו ויוי	JUJAA	INDOIT	VI 7
S710	ELS (Contaminated Sediment)	2	07/12/21	08/12/21		1-1-1-		+-:-:					9	<u> </u>		- - - -						
S711	ELS (Uncontaminated Sediment)	2	09/12/21	10/12/21									-1									
S712	ELS (Soil)	139	11/12/21	06/06/22		1111																
S713	ELS (Rock)	8	07/06/22	15/06/22		1111								<u>-</u>								
S720	C&C Tunnel Structure	72	16/06/22	08/09/22			{ } {}	+				.+		t-]							
S722	Backfill	49	09/09/22	08/11/22			{} { {	+				+		;;;;;;; <u>;</u>		- - - - -				-		
S725	Ma Tau Kok Seawall Reinstatement	53	29/11/22	04/02/23												# 11						
S730	KD 6A	0		06/05/23*												-						
U Trougl	n Structures and At-Grade Road Area (KD07)	,		,																		
S740	Repossess Portion 3D	0	05/10/21*											· · · · · · · · · · · · · · · · · · ·								
S745	Sheetpile & Pumping Test	68	05/10/21	23/12/21								-										
S750	ELS (Soil)	143	24/12/21	23/06/22									-									
S760	Construct Trough Structure	120	24/06/22	15/11/22																		
S770	Backfill & Remove Sheetpile	120	03/09/22	31/01/23										-								
S775	Roadwork for At-Grade Road	77	01/02/23	06/05/23											-							
S780	KD 07	0		06/05/23*												-						
Kowloon	City Ferry Pier Public Transport Interchange Reinstatement (KD09)																					
S790	All works Completed at Ma Tau Kok Side	0		06/05/23												 						
S800	Remove Decking, Roads and Drains (TTM Stages 7-10)	344	08/05/23	04/07/24																		
S810	KD 09	0		05/07/24*		<u> </u>																
_	ation and Protection of Trees (KD13)																					
S820	Trees Survey, Proposal, and Approval	90	05/01/18																			
S830	Implement measures for Trees Protection/Preservation	365	28/04/18		<u> </u>									<u> </u>								
S840	KD 13	0		05/07/24*													-41					
_	aining Works and Roadwork for Opening to the Public (KD08)					ļ. ļ. ļ																
S850	All works Completed at both Kai Tak & Ma Tau Kok Sides	0		04/07/24																. 🟲		
S860	Reinstate Affected Road Areas & Traffic Diversions	120	05/07/24	25/11/24	-			ļ <u> </u>						ļ. ļ								
S870	Reinstate Affected Areas	30	26/11/24	02/01/25		ļ. ļ. ļ															7	
S880	KD 08	0		02/01/25*	.	ļ. ļ. ļ	 	 				.+		; ;		4-4-4-4						
_	ment Works (KD11)				 	ļ. ļ. ļ												- - - -		<u>. </u>		
S890	Establishment Works (Except in Portion 1E) Period	365	06/07/24		.																	
S900	KD 11	0		05/07/25*																		

CONTRACT NO. HY2014/07

CENTRAL KOWLOON ROUTE - KAI TAK WEST


INITIAL WORKS PROGRAMME (IWP)

Page 4	Date	Revision	Checked	Approved
3 -	05 Jan 18	IWP		

APPENDIX B

Project Organization Structure

Appendix B Project Organization Structure

Appendix B AECOM

APPENDIX C

Implementation Schedule of Environmental Mitigation Measures

Appendix C – Environmental Mitigation Implementation Schedule

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Air Quality	(Construction	on Phase)					
S4.3.10	D1	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	V
\$4.3.10	D2	• Mitigation measures in form of regular watering under a good site practice should be adopted. Watering once per hour on exposed worksites and haul road should be conducted to achieve dust removal efficiencies of 91.7%. While the above watering frequencies are to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.3 L/m² to achieve the dust removal efficiency.	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	@
S4.3.10	D3	 Proper watering of exposed spoil should be undertaken throughout the construction phase: Any excavated or stockpile of dusty material should be covered entirely by impervious 	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	V
		sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading;					V
		 Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads; 					V
		 A stockpile of dusty material should not be extend beyond the pedestrian barriers, fencing or traffic cones. 					V
		 The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet should be 					V
		provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores;					V
		When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided and properly maintained as far as practicable along the site boundary with provision for public crossing; Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;					

AECOM Asia Co. Ltd.

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		 The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust 					V
		 suppression chemical continuously; Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities 					V
		 where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; 					V
		 from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport should be totally enclosed by impervious sheeting; Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides; 					V @
		 Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed; 					V
		 Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and 					V
		 Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 					V
\$4.3.10	D5	Implement regular dust monitoring under EM&A programme during the construction stage.	Monitoring of dust impact	Contractor	Selected representative dust monitoring station	Construction stage	V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	on Noise (Airb						<u> </u>
S5.4.1	N1	 Implement the following good site practices: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; machines and plant (such as trucks, cranes) that may be in intermittent use should be 	Control construction airborne noise	Contractor	All construction sites	Construction stage	V
		 shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; 					V
		 silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; 					V
		 mobile plant should be sited as far away from NSRs as possible and practicable; material stockpiles, mobile container site office and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 					V
\$5.4.1	N2	Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoardings shall be properly maintained throughout the construction period.	Reduce the construction noise levels at low-level zone of NSRs through partial screening.	Contractor	All construction sites	Construction stage	V
S5.4.1	N3	Install movable noise barriers (typical design is wooden framed barrier with a small-cantilevered on a skid footing with 25mm thick internal sound absorptive lining), acoustic mat or full enclosure, screen the noisy plants including air compressors, generators and handheld breakers etc	Screen the noisy plant items to be used at all construction sites	Contractor	All construction sites where practicable	Construction stage	@
S5.4.1	N4	Use "Quiet plants"	Reduce the noise levels of plant items	Contractor	All construction sites where practicable	Construction stage	V
S5.4.1	N5	Loading/unloading activities should be carried out inside the full enclosure of mucking out points	Reduce the noise levels of loading/unloading activities	Contractor	Mucking out locations	Construction stage	V

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		Recommended	implement the	measure	implement the	Status
			Measures & Main	measures?		measures?	
			Concern to Address				
S5.4.1	N6	Sequencing operation of construction plants where practicable.	Operate	Contractor	All	Construction	V
			sequentially within		construction	stage	
			the same work site		sites where		
			to reduce the		practicable		
			construction				
			airborne noise				
S5.4.1	N7	Implement a noise monitoring under EM&A programme.	Monitor the	Contractor	Selected	Construction	V
			construction		representative	stage	
			noise levels at the		noise		
			selected		monitoring		
			representative		station		
			locations				
S5.5.2	N8	Install temporary noise barriers along the works area at temporary Kowloon City Ferry Pier	Reduce temporary	Contractor	Kowloon City	Different	N/A
		Public Transport Interchange	PTI noise		Ferry Pier	construction	
						stages	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Water Qua	ity (Constru	ction Phase)					
Water Qual S6.9.1.1	W1	In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN1/94), construction phase mitigation measures shall include the following: Construction Runoff At the start of site establishment (including the barging facilities), perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system will be undertaken by the contractor prior to the commencement of construction. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a site/sediment trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. Sizes may vary depending upon the flow rate, but for a flow rate of 0.1 m3/s a sedimentation basin of 30m3 would be required and for a flow rate of 0.5 m3/s the basin would be 150 m3. The detailed design of the sand/silt traps shall be undertaken by the contractor prior to the commencement of construction. All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. Exposed slope surfaces should be covered by tarpaulin or other means.	quality impact from construction site runoff and general construction activities	Contractor	All construction sites where practicable	Construction stage	V
		The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows, and all traffic areas and access roads protected by coarse stone ballast. An additional advantage accruing from the use of crushed stone is the positive traction gained during prolonged periods of inclement weather.	,				V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
			Concern to				
			Address				
		and the reduction of surface sheet flows.					
		 All drainage facilities and erosion and sediment control structures should be 					V
		regularly inspected and maintained to ensure proper and efficient operation at all					
		times and particularly following rainstorms. Deposited silt and grit should be					
		removed regularly and disposed of by spreading evenly over stable, vegetated					
		areas.					
		 Measures should be taken to minimize the ingress of site drainage into excavations. 					V
		If the excavation of trenches in wet periods is necessary, they should be dug and					
		backfilled in short sections wherever practicable. Water pumped out from trenches					
		or foundation excavations should be discharged into storm drains via silt removal facilities.					
		Open stockpiles of construction materials (for example, aggregates, sand and fill					V
		material) of more than 50m ³ should be covered with tarpaulin or similar fabric during					
		rainstorms. Measures should be taken to prevent the washing away of construction					
		materials, soil, silt or debris into any drainage system.					
		Manholes (including newly constructed ones) should always be adequately covered					V
		and temporarily sealed so as to prevent silt, construction materials or debris being					
		washed into the drainage system and storm runoff being directed into foul					
		sewers.					
		• Precautions be taken at any time of year when rainstorms are likely, actions to be					V
		taken when a rainstorm is imminent or forecasted, and actions to be taken during or					
		after rainstorms are funneling in Appendix A2 of ProPECC PN 1/94. Particular					
		attention should be paid to the control of silty surface runoff during storm events,					
		especially for areas located near steep slopes.					
		All vehicles and plant should be cleaned before leaving a construction site to ensure					V
		no earth, mud, debris and the like is deposited by them on roads. An adequately					
		designed and sited wheel washing facilities should be provided at every construction					
		site exit where practicable. Wash-water should have sand and silt settled out and					
		removed at least on a weekly basis to ensure the continued efficiency of the process.					
		The section of access road leading to, and exiting from, the wheel-wash bay to the					
		public road should be paved with sufficient backfall toward the wheel-wash bay to					
		prevent vehicle tracking of soil and silty water to public roads and drains.					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		 Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain. Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. Adopt best management practices All the earth works involving should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to 					@ V V V
\$6.9.1.2	W2	 September) as far as practicable. Tunnelling Works and Underground Works Cut-&-cover tunneling work should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. Uncontaminated discharge should pass through sedimentation tanks prior to off-site discharge The wastewater with a high concentration of SS should be treated (e.g. by sedimentation tanks with sufficient retention time) before discharge. Oil interceptors would also be required to remove the oil, lubricants and grease from the wastewater. Direct discharge of the bentonite slurry (as a result of D-wall and bored 7unneling construction) is not allowed. It should be reconditioned and reused wherever practicable. Temporary storage locations (typically a properly closed warehouse) should be provided on site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC PN 1/94 should be adhered to in the handling and disposal of bentonite slurries. 	water quality impact from tunneling works	Contractor	All tunneling portion	Construction stage	N/A
S6.9.1.3	W3	Sewage Effluent ■ Portable chemical toilets and sewage holding tanks are recommended for handling	To minimize water quality	Contractor	All construction sites	Construction stage	V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
			from sewage effluent		where practicable		
S6.9.1.5	W4	and be responsible for appropriate disposal and maintenance. Groundwater from Potential Contaminated Area: No direct discharge of groundwater from contaminated areas should be adopted. A discharge license under the WPCO through the Regional Office of EPD for groundwater discharge should be applied. Prior to the excavation works within these potentially contaminated areas, the groundwater quality should be reviewed during the process of discharge license application. The compliance to the Technical Memorandum on Standards for Effluents Discharged into Drainage on Sewerage Systems, Inland and Coastal Waters (TM-DSS) and the existence of prohibited substance should be confirmed. If the review results indicated that the groundwater to be generated from the excavation works would be contaminated, the contaminated groundwater should be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground. If wastewater treatment is deployed, the wastewater treatment unit shall deploy suitable treatment process (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (e.g. TPH) to undetectable range. All treated effluent from wastewater treatment plant shall meet the requirements as stated in TM-DSS and should be discharged into the foul sewers. If groundwater recharging wells are deployed, recharging wells should be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells should be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in the Section 2.3 of TM-DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged) to EPD for agreement.	from contaminated area	Contractor	Excavation areas where contamination is found.	Construction stage	V V V
		Pollution levels of groundwater to be recharged shall not be higher than pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited substances such as TPH products should be removed as necessary by installing					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures the petrol interceptor.	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
\$6.7.2.1	W5	 Temporary Reclamation During temporary reclamation, regular litter / rubbish clearance and avoidance of illegal discharges within the embayed marine water should be undertaken. During temporary reclamation, the perimeter silt curtain should be deployed. 	To minimize water quality impact from temporary reclamation	Contractor	Temporary Reclamation	Construction stage	N/A
S6.9.1.6	W6	 Accidental spillage In order to prevent accidental spillage of chemicals, the following is recommended: All the tanks, containers, storage area should be bunded and the locations should be locked as far as possible from the sensitive watercourse and stormwater drains. The Contractor should register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities should be stored with suitable labels and warnings. Disposal of chemical wastes should be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	accidental spillage	Contractor	All construction sites where practicable	Construction stage	V V
\$6.9.2.2	W7	 Dredging Works The following good practice shall apply for the dredging works: Install efficient silt curtains, i.e. at least 75% SS reduction, at the point of seawall dredging to control the dispersion of SS; Implement water quality monitoring to ensure effective control of water pollution and recommend additional mitigation measures required; The decent speed of grabs should be controlled to minimize the seabed impact and to reduce the volume of over-dredging; All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; The dredging rates by closed grab dredgers for temporary marine channel outside pipepile wall shall be less than 1,500 m³/day and 125 m³/hour (without concurrent dredging with T2 in dry season only) or 750 m³/day and 62.5 m³/hour for other conditions respectively. Dredging works shall be only for the provision marine channel. No dredging work is 		Contractor	Kai Tak Barging Point during dredging works	Dredging period	V V V V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		required for temporary reclamation; and The workfront of temporary reclamation shall be surrounded by cofferdams and the associated excavation and backfilling works for temporary reclamation shall have no contact with seawater.					V
\$6.9.2.2	W8	 In dry season, the dredging rate shall be less than 1500m³/day if no concurrent projects. In all other scenario, the dredging rate shall be less than 750m³/day Dredging works shall be only for the provision marine channel. No dredging work is required for temporary reclamation. The workfront of temporary reclamation shall be surrounded by cofferdams and the associated excavation and backfilling works for temporary reclamation shall have no contact with seawater. In case the DCS would be operated during the dredging period of CKR, silt screen 	sediment suspension during dredging if the District Cooling System for Kai Tak Development would be operated in the same period	Contractor	Kai Tak Barging Point during dredging works	Dredging period	N/A V V V N/A
S6.9.2	W9	Barges or hoppers should not be filled to a level that will cause overflow of materials	disturbance during dredged sediment handling/barging operation	Contractor	All land- based site and proposed Kwai Chung barging point	Construction stage	v v v

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		Recommended	implement the	measure	implement the	Status
			Measures & Main	measures?		measures?	
			Concern to				
			Address				
		proposed barging facilities where appropriate.					
S6.9	W10	Implement a marine water quality monitoring programme	Monitor marine	Contractor	At identified	Prior to and	V
			water quality prior		monitoring	during dredging	
			to and during		location	period	
			dredging period				

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended	Who to	Location of	When to	Implementation
	Log Ref		Measures & Main	implement the	the measure	implement the measures?	Status
			Concern to Address	measures?		illeasures:	
Waste Man	l Jagement (C	Construction Waste)	Concern to Address	ilicasures:			
S7.4.1	WM1	On-site sorting of C&D material	Separation of unsuitable	Contractor	All	Construction	
57.4.1	VVIVIT	• Geological assessment should be carried out by competent persons on site during excavation to identify materials which are not suitable to use as aggregate in structural concrete (e.g. volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke rock should be separated at the source sites as far as practicable and stored at designated stockpile areas preventing them from delivering to crushing facilities. The crushing plant operator should also be reminded to set up measures to prevent unsuitable rock from ended up at concrete batching plants and be turned into concrete for structural use. Details regarding control measures at source site and crushing facilities should be submitted by the Contractors for the Engineer to review and agree. In addition, site records should also be kept for the types of rock materials excavated and the traceability of delivery will be ensured with the implementation of Trip Ticket System and enforced by site supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for tracking of the correct delivery to the rock crushing facilities for processing into aggregates. Alternative disposal option for the	concrete batching plants and be turned into concrete for structural use	Contractor	construction sites	stage	V
S7.5.1	WM2	reuse of volcanic rock and Aplite Dyke rock, etc should also be explored. Construction and Demolition Material	Good site practice to	Contractor	All	Construction	
		 Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; Adopt 'Selective Demolition' technique to demolish the existing structures and facilities with a view to recovering broken concrete effectively for recycling purpose, where possible; Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; and Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction. 	minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal		construction	stage	V V V V
S7.5.1	WM3	C&D Waste Standard formwork or pre-fabrication should be used as far as practicable in order to	Good site practice to minimize the waste	Contractor	All construction	Construction stage	V

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	Implementation
	Log Ref		Recommended	implement	the measure	implement the	Status
			Measures & Main	the		measures?	
			Concern to Address	measures?			
		minimise the arising of C&D materials. The use of more durable formwork or plastic	-		sites		
		facing for the construction works should be considered. Use of wooden hoardings should					
		not be used, as in other projects. Metal hoarding should be used to enhance the possibility	as practicable so as to				
		of recycling. The purchasing of construction materials will be carefully planned in order to	reduce the amount for				
		avoid over ordering and wastage.	final disposal				
		The Contractor should recycle as much of the C&D materials as possible on-site. Public					V
		fill and C&D waste should be segregated and stored in different containers or skips to					
		enhance reuse or recycling of materials and their proper disposal. Where practicable,					
		concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be					
		used by scrap steel mills. Different areas of the sites should be considered for such					
		segregation and storage.					
S7.5.1	WM5	<u>Land-based and Marine-based Sediment</u>	To control pollution due	Contractor	Along CKR	Construction	N/A
		All construction plant and equipment shall be designed and maintained to minimize the	to marine sediment		alignment	Stage	
		risk of silt, sediments, contaminants or other pollutants being released into the water					
		column or deposited in the locations other than designated location;					
		All vessels shall be sized such that adequate draft is maintained between vessels and the					
		sea bed at all states of the tide to ensure that undue turbidity is not generated by	,				
		turbulence from vessel movement or propeller wash;					
		Before moving the vessels which are used for transporting dredged material, excess					
		material shall be cleaned from the decks and exposed fittings of vessels and the excess					
		materials shall never be dumped into the sea except at the approved locations;					
		 Adequate freeboard shall be maintained on barges to ensure that decks are not washed 					
		by wave action.					
		The Contractors shall monitor all vessels transporting material to ensure that no dumping					
		outside the approved location takes place. The Contractor shall keep and produce logs					
		and other records to demonstrate compliance and that journeys are consistent with					
		designated locations and copies of such records shall be submitted to the engineers;					
		The Contractors shall comply with the conditions in the dumping licence.					
		All bottom dumping vessels (Hopper barges) shall be fitted with tight fittings seals to their					
		bottom openings to prevent leakage of material;					
		The material shall be placed into the disposal pit by bottom dumping;					
		Contaminated marine mud shall be transported by spit barge of not less than 750m3					
		capacity and capable of rapid opening and discharge at the disposal site;					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		 Discharge shall be undertaken rapidly and the hoppers shall be closed immediately. Material adhering to the sides of the hopper shall not be washed out of the hopper and the hopper shall remain closed until the barge returns to the disposal site. For Type 3 special disposal treatment, sealing of contaminant with geosynthetic containment before dropping into designated mud pit would be a possible arrangement. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping at the disposal site, thereby fulfilling the requirements for fully confined mud disposal. 					
S7.5.1	WM6	 Chemical Waste Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation. 	proper storage, handling and disposal.	Contractor	All construction sites	Construction stage	V
		 The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated. Disposal of chemical waste should be via a licensed waste collector; be to a facility 					@ V
		licensed to receive chemical waste, such as the Chemical Waste Treatment Centre which also offers a chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	Implementation
	Log Ref		Recommended	implement	the measure	implement the	Status
			Measures & Main	the		measures?	
			Concern to Address	measures?			
S7.5.1	WM7	General Refuse	Minimize production of the	Contractor	All	Construction	
		General refuse generated on-site should be stored in enclosed bins or compaction units	general refuse and avoid		construction	stage	V
		separately from construction and chemical wastes.	odour, pest and litter		sites		
		A reputable waste collector should be employed by the Contractor to remove general	impacts				V
		refuse from the site, separately from construction and chemical wastes, on a daily basis					
		to minimize odour, pest and litter impacts. Burning of refuse on construction sites is					
		prohibited by law.					
		Aluminium cans are often recovered from the waste stream by individual collectors if they					V
		are segregated and made easily accessible. Separate labelled bins for their deposit should					
		be provided if feasible.					
		Office wastes can be reduced through the recycling of paper if volumes are large enough					V
		to warrant collection. Participation in a local collection scheme should be considered by					
		the Contractor.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		Recommended	implement the	measure	implement the	Status
			Measures & Main	measures?		measures?	
			Concern to Address				
Land Conta	mination						
S8.10,	LC1	Remaining SI Works	Investigation of the	Contractor	EBH1, EBH2	Prior to	V
S8.12 &		The potential for land contamination issues at EBH1, EBH2, and EBH3 will be confirmed by	potential land		and EBH3	commencement	
Appendi		site investigation after site possession and utility diversion by the construction contractor.	contamination			of construction	
x 8.4		Following the completion of the remaining SI works, the Project Proponent would prepare and	issues at EBH1,			works at the	
		submit a Second Supplementary CAR/RAP to EPD to present the findings of the SI works and	EBH2 and EBH3			Kowloon City	
		to recommend specific remediation measures, if required. Upon completion of the remediation	which cannot be			Ferry Pier Public	
		works, if any, a Remediation Report (RR) would be prepared and submitted to EPD for	completed at the EIA			Transport	
		agreement prior to commencement of the construction works.	stage due to			Interchange (PTI)	
			underground utility			(for EBH1 &	
			and site access			EBH2) and the	
			constraints.			works area	
						adjacent to the	
						To Kwa Wan	
						Vehicle	

AECOM Asia Co. Ltd.

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		Recommended	implement the	measure	implement the	Status
			Measures & Main	measures?		measures?	
			Concern to Address				
						Examination	
						Centre (for	
						EBH3)	

EIA Ref.	EM&A Log Ref		Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Landscape	& Visual				•	•	•	
S10.10.1 Table 10.11	LV3	•	Good Site Management Large temporary stockpiles of excavated material shall be covered with unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance. Construction plant and building material shall be orderly and carefully stored in order to create a neat and tidy visual appearance.		Contractor	Within Project Site	Construction Phase	V
S10.10.1 Table 10.11	LV4	•	Screen Hoarding Decorative screen hoarding should be erected to screen the public from the construction area. It should be designed to be compatible with the existing urban context.	Minimize visual impact	Contractor	Within Project Site	Construction Phase	٧
S10.10.1 Table 10.11	LV5	•	<u>Lighting Control during Construction</u> All lighting in the construction site shall be carefully controlled to minimize light pollution and night-time glare to nearby residencies and GIC. The contractor shall consider other security measures, which shall minimize the visual impacts.		Contractor	Within Project Site	Construction Phase	V
S10.10.1 Table 10.11	LV6	•	Erosion Control The potential for soil erosion shall be reduced by minimizing the extent of vegetation disturbance on site and by providing a protective cover over newly exposed soil.	Minimize landscape impact	Contractor	Within Project Site	Construction Phase	V
S10.10.1 Table 10.11	LV7	•	Tree Protection & Preservation Carefully protected during construction. Tree protection measures will be detailed at the Tree Removal Application stage and plans submitted to the relevant Government Department for approval in due course in accordance with ETWB TC no. 3/2006.	•	Contractor	Within Project Site	Design and Construction Phase	V
S10.10.1 Table 10.11	LV9	•	Compensatory Planting For trees unavoidably affected by the Project that have to be removed, where practical transplantation will be chosen as the top priority method of removal but if this is not	'	Contractor	Within Project Site and	Construction Phase	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		possible or practical compensatory planting will be provided for trees unavoid All felled trees shall be compensated for by planting trees to the satisfaction Government departments. Required numbers and locations of compensatory be determined and agreed separately with Government during the Tree Felling process under ETWBTC 3/2006. Compensatory tree planting may be incorporated into public open spaces roadside amenity areas affected by the construction works and therefore be bigger wider planting plans. Onsite compensation planting is preferred but if additional receptor sites outside the Works Area shall be agreed sepa Government during the Tree Felling Application process.	of relevant trees shall Application and along part of the necessary,		designated off-site locations		
S10.10.1 Table 10.11	LV10	Screen Planting Tall screen/buffer trees, shrubs and climbers should be planted, in so far as is p soften and screen proposed structures such as roads and central strip, vertical buildings and to enhance streetscape greening effect where appropriate. Ind use of trees for screening must be avoided and the principle of 'right tree for the must be followed. This detail will be provided at the Detailed Design stage. The may additionally form part of the compensatory planting and will improve an pleasant pedestrian environment.	edges and landscape. iscriminate right place' s measure	Contractor	Within Project Site	Construction Phase	N/A
S10.10.1 Table 10.11	LV11	Green Roof Roof greening will be established on ventilation and administration buildings exposure to untreated concrete surfaces and particularly mitigate visual impa at high levels.	· ·	Contractor	Within Project Site	Construction Phase	N/A
S10.10.1 Table 10.11	LV12	Reinstatement All works areas, excavated areas and disturbed areas for tunnel construtemporary road diversion or any other proposed works shall be reinstated conditions or better, with reasonable landscape treatment and to the satisfact relevant Government departments. (Specific mitigation for disturbance to p space is detailed separately under LV14)	to former tion of the	Contractor	Within Project Site	Construction Phase	N/A
S10.10.1 Table 10.11	LV14	Landscape enhancement Implement a comprehensive landscape plan to maximize the greening oppo create a unique landscape for the project to blend in with the surrounding, incluprovisioned areas. In particular: landscape enhancement of re-provisioned Public Transport Interchange;		Contractor	Along tunnel alignment	Construction phase	N/A

AECOM Asia Co. Ltd.

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	Implementation
	Log Ref		Recommended	implement the	the measure	implement the	Status
			Measures & Main	measures?		measures?	
			Concern to Address				
		- landscape deck on tunnel portals;					
		- viaduct planters for trailer planting;					
		 vertical greening of piers and walls with climbers or trailer planting; 					
		roadside planting i.e. planting along central dividers and on road islands e.g. in the middle					
		of roundabouts.					
		(Roadside planting i.e. at the road edge and not in the central divider or road island, and					
		vertical greening may be considered part of Screen Planting).					
		- Purpose-built maintenance access without temporary traffic arrangement must be					
		provided and detailed design of landscape decks and planting, including details of					
		maintenance access locations, will be sent to maintenance and management parties for					
		endorsement and ensures these mitigation measures are feasible.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	Implementation
	Log Ref		Recommended	implement	the measure	implement the	Status
			Measures & Main	the		measures?	
			Concern to Address	measures?			
		t (Construction and Operational Phase)	1	Т		T	
S11.4.4	CH1	 The contractor should be alerted during the construction on the possibility of locating 	1 '	Contractor	During	During the	N/A
		archaeological remains and as a precautionary measure, AMO shall be informed	heritage items which may		construction	construction	
		immediately in case of discovery of antiquities or supposed antiquities in the subject	be removed and		works for cut	phase	
		sites.	damaged by the		and cover		
			excavation.		tunnels		
S11.6 para	CH2	 The dredging contractor should be alerted during the construction on the possibility of 	To preserve any cultural	Contractor	During	During the	N/A
3		locating archaeological remains, such as cannon and AMO shall be informed	heritage items which may		construction	construction	
		immediately in case of discovery of antiquities or supposed antiquities in the subject	be removed and		of	phase	
		areas.	damaged by the dredging.		underwater		
					tunnel (north		
					of To Kwa		
					Wan Typhoon		
					Shelter)		
S12.6.1,	CH8	A monitoring system for settlement, vibration and tilting will be determined and	Protect the structure	Contractor	Kowloon City	During the	N/A
Table		implemented pending determination of the future grading. A monitoring proposal wil	from damage from		Ferry Pier	construction	
12.2		be submitted to AMO before commencement of work if a historic building grade is	construction works		(CKR-13)	phase	
		accorded.					
S12.6.1,	CH9	No mitigation is required at present. If the public pier is granted Grade 1, Grade 2 or	To be determined	Contractor	Ma Tau Kok	During the	N/A
Table		Grade 3 status, the mitigation will be revised to adhere to the requirements for			Public Pier	construction	
12.2		protective measures for Graded Historic Buildings			(CKR-16)	phase	
S12.6.1,	CH10	A monitoring system for settlement, vibration and tilting will be determined and	Protect the structure	Contractor	The Kowloon	During the	N/A
Table		implemented pending determination of the future grading. A monitoring proposal will			City Vehicular	construction	
12.2		be submitted to AMO before commencement of work if a historic building grade is			Ferry Pier	phase	
		accorded.			(CKR-17)	,	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
EM&A Pro	ject						
S13.2	EM1	An Independent Environmental Checker needs to be	Control EM&A	Highways	All	Construction	V
		employed as per the EM&A Manual.	Performance	Department	construction sites	stage	
S13.2	EM2	1) An Environmental Team needs to be employed as per the	Perform environmental	Highways	All	Construction	V
-13.4		EM&A Manual.	monitoring & auditing	Department /	construction	stage	
		Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures.		Contractor	sites		V
		 An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with. 					V

Legends:

V = implemented;

X = not implemented;

@ = partially implemented;

N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D - Summary of Action and Limit Levels

Table 1 Action and Limit Levels for 24-hour TSP

ID	Location	Action Level	Limit Level
E-A14a	Block B of Merit Industrial Centre	197.3 μg/m³	260 μg/m³

Table 2 Action and Limit Levels for 1-hour TSP

ID	Location	Action Level	Limit Level
E-A14a	Block B of Merit Industrial Centre	302.4 μg/m³	500 μg/m³

Table 3 Action and Limit Levels for Construction Noise (0700 – 1900 hrs of normal weekdays)

ID	Location	Action Level	Limit Level
E-N12a	19 Hing Yan Street	When one documented complaint is received	75 dB(A)
E-N21a	Block B of Merit Industrial Centre	When one documented complaint is received	75 dB(A)

Appendix D AECOM

Table 4 Derived Action and Limit Levels for Water Quality

Parameters	Action Level	Limit Level
Dissolved Oxygen (DO) in mg/L ⁽¹⁾	Surface & Middle: 4.03 (5th percentile of baseline data for surface and middle layer) Bottom: 3.94 (5th percentile of baseline data for bottom layer)	Surface & Middle: 3.88 (1st percentile of baseline data for surface and middle layer) Bottom: 2.00
Suspended Solids (SS) in mg/L ⁽²⁾	13.80 (95th percentile of baseline data) or 120% of upstream control station's SS at the same tide of the same day	18.70 (99th percentile of baseline data) or 130% of upstream control station's SS at the same tide of the same day
Turbidity in NTU ⁽²⁾	7.00 (95th percentile of baseline data) or 120% of upstream control station's Turbidity at the same tide of the same day	8.40 (99th percentile of baseline data or 130% of upstream control station's Turbidity at the same tide of the same day
Copper in μg/L ⁽²⁾	2.00 (95th percentile of baseline data) or 120% of upstream control station's nutrient level at the same tide of the same day	3.00 (99th percentile of baseline data) or 130% of upstream control station's nutrient level at the same tide of the same day or whichever is the less
Total PAH in μg/L ⁽²⁾	1.60 (95th percentile of baseline data) or 120% of upstream control station's nutrient level at the same tide of the same day	1.60 (99th percentile of baseline data) or 130% of upstream control station's nutrient level at the same tide of the same day or whichever is the less

Note: 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

Appendix D AECOM

^{2.} For turbidity, SS, Copper and Total PAH, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

APPENDIX E

Calibration Certificates of Equipments

RECALIBRATION **DUE DATE:**

May 22, 2019

ertificate o

Calibration Certification Information

Cal. Date: May 22, 2018

Rootsmeter S/N: 438320

Ta: 296 Pa: 749.3 °K

Operator: Jim Tisch

Calibration Model #: TE-5025A

Calibrator S/N: 0988

mm Hg

Run	Vol. Init (m3)	Vol. final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3840	3.2	2.00
2	3	4	1	0.9840	6.4	4.00
3	5	6	1	0.8790	7.9	5.00
4	7	8	1	0.8420	8.7	5.50
5	9	10	1	0.6900	12.7	8.00

		Data Tabulat	tion		
Vstd (m3)	Qstd (x-axis)	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ (y-axis)	V-	Qa (v. avia)	√ΔH(Ta/Pa)
0.9883	0.7141	The second secon	Va	(x-axis)	(y-axis)
		1.4090	0.9957	0.7195	0.8889
0.9841	1.0001	1.9926	0.9915	1.0076	1.2570
0.9821	1.1173	2.2278	0.9895	1.1257	1.4054
0.9811	1.1652	2.3365	0.9884	1.1739	1.4740
0.9758	1.4141	2.8179	0.9831	1.4247	1,7777
	m=	2.01748		m=	1.26331
QSTD[b≃	b= -0.02651		b=	-0.01673
×-	r=	0.99988	QA	r=	0.99988

Calculation	ns		
Vstd= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va= ΔVol((Pa-ΔP)/Pa)		
Qstd= Vstd/ΔTime	Qa= Va/ΔTime		
For subsequent flow rat	e calculations:		
Qstd= $1/m \left(\left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b \right)$	$Qa = 1/m \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$		

	Standard Conditions	
Tstd:	298.15 °K	
Pstd:	760 mm Hg	
	Key	
ΔH: calibrator	manometer reading (in H2O)	
ΔP: rootsmete	er manometer reading (mm Hg)	_
Ta: actual abs	olute temperature (°K)	
Pa: actual bar	ometric pressure (mm Hg)	_
b: intercept		
m: slope		_

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the **Determination of Suspended Particulate Matter in** the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

AECOM Asia Company Limited Tisch TSP Mass Flow Controlled High Volume Air Sampler Field Calibration Report

Call Date: Z8-Jan-19 Next Due Date: Z8-Mar-19 Serial No. 10380
A-001-15T
Ambient Condition Temperature, Ta (K) 293 Pressure, Pa (mmHg) 758.0
Temperature, Ta (K) 293 Pressure, Pa (mmHg) 758.0
Serial No: 988 Slope, mc 2.01748 Intercept, b
Serial No: 988 Slope, mc 2.01748 Intercept, b
Serial No: 988 Slope, mc 2.01748 Intercept, b
Last Calibration Date: 22-May-18
Next Calibration Date: 22-May-19 mc x Qstd + bc = [H x (Pa/760) x (298/Ta)] mc x Qstd + bc = [H x (Pa
Calibration of TSP Sampler Continuous
No. DH (orifice), in. of water [DH x (Pa/760) x (298/Ta)]
No. DH (orifice), in. of water [DH x (Pa/760) x (298/Ta)]
Resistance Plate No. DH (orifice), in. of water
No. DH (orifice), in. of water [DH x (Pa/760) x (298/Ta)] ^{1/2} Qstd (m³/min) X axis Reading (CFM) Reading IC 18
13 6.2 2.51 1.26 43.0 4 10 4.8 2.21 1.11 37.0 3 7 3.5 1.88 0.95 30.0 3 5 2.3 1.53 0.77 22.0 2 By Linear Regression of Y on X Slope , mw = 44.1145 Intercept, bw = -11.7137
10 4.8 2.21 1.11 37.0 3 7 3.5 1.88 0.95 30.0 3 5 2.3 1.53 0.77 22.0 2 By Linear Regression of Y on X Slope , mw = 44.1145 Intercept, bw = -11.7137
7 3.5 1.88 0.95 30.0 3 5 2.3 1.53 0.77 22.0 2 By Linear Regression of Y on X Blope , mw = 44.1145 Intercept, bw = -11.7137
5 2.3 1.53 0.77 22.0 2 By Linear Regression of Y on X Slope , mw = 44.1145 Intercept, bw = -11.7137
By Linear Regression of Y on X Slope , mw = 44.1145 Intercept, bw = -11.7137
Slope , mw = 44.1145 Intercept, bw = -11.7137
If Correlation Coefficient < 0.990, check and recalibrate.
Set Point Calculation
From the TSP Field Calibration Curve, take Qstd = 1.30m ³ /min
From the Regression Equation, the "Y" value according to
mw x Qstd + bw = IC x $[(Pa/760) \times (298/Ta)]^{1/2}$
1/2
Therefore, Set Point; IC = $(mw \times Qstd + bw) \times [(760 / Pa) \times (Ta / 298)]^{1/2} =$ 45.31

EQUIPMENT CALIBRATION RECORD

Model Equip	Type: Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting:				Laser Dust Monitor SIBATA LD-3B A.005.16a 521 CPM				
Opera				_	Mike Shek (MSKM)				
Standa	rd Equipment		300.15					13.000	
	e: No.:	Cyll Ser Cor Ser 3 M	perpor ries 14 ntrol: nsor: lay 20	t (Pui Y 00AB 140 120	tashnick Ting Seco	ndary Sc 19803 19803	K₀: <u>125</u> 0	0	
					- Cambrat				
Calibra	tion Result	-					39 IR		
	ivity Adjustment ivity Adjustment							PM PM	
Hour	Date (dd-mm-yy)	٦	Time		Amb Cond Temp (°C)		Concentration ¹ (mg/m³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	14-07-18	10:15		11:15	29.1	79	0.04328	1742	29.03
2	14-07-18	11:15		12:15	29.1	78	0.04673	1874	31.23
3	14-07-18	12:15		13:15	29.2	79	0.04904	1961	32.68
Note:	Total Count	was logg	neasu ed by	Laser D	Oust Moni	tor	0.04734 shnick TEOM®	1897	31.62
Slope Correl	3. Count/minut ar Regression of (K-factor): ation coefficient: y of Calibration F	Y or X	0.0	015 974 July 20					
Remark	SS:								
QC Re	eviewer: <u>YW F</u>	ung		Signat	ure:	4/	Da	te: 16 Jul	y 2018

EQUIPMENT CALIBRATION RECORD

Type:				Lacor D	ust Mani	itor					
	facturer/Brand:	Laser Dust Monitor SIBATA									
Model No.: Equipment No.:				LD-3		, , , , , , , , , , , , , , , , , , ,					
				A.005.07	'a						
Sensitivity Adjustment Scale Setting:			g: _	557 CP	И						
Operator:				Mike Shek (MSKM)							
Standa	rd Equipment						37 5				
			A								
7 2 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Rupprecht & Patashnick TEOM®								
Venue			Cyberport (Pui Ying Secondary School)								
Model			Series 1400AB								
Serial	NO:		Control: 140AB219899803								
Last C	Calibration Date*:		Sensor: <u>1200C143659803</u> K _o : <u>12500</u> 3 May 2018								
	andradon Bate .	_ o may	2010		201						
*Remar	ks: Recommend	ed interval fo	r hardwai	re calibra	tion is 1 y	year					
Calibra	tion Result										
0:		0 - 1 - 0 - 11'	(D. f.	.							
Sensit	ivity Adjustment	Scale Setting	(Before	Calibratio	n):		PM				
Sensit	ivity Adjustment	Scale Setting	(After Ca	alibration):	_ <i>557</i> CF	PM				
Hour	Date Time		e Ambient		nient	Concentration ¹	Total	Count/			
1.00.	(dd-mm-yy)				dition	(mg/m³)	Count ²	Minute ³			
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Temp	R.H.	Y-axis	Joann	X-axis			
,				(°C)	(%)			7. 42.10			
1	05-05-18	09:15 -	10:15	27.6	79	0.05367	2151	35.85			
2	05-05-18	10:15 -	11:15	27.6	80	0.05864	2347	39.12			
3	05-05-18	11:15 -	12:15	27.7	80	0.06661	2679	44.65			
4	05-05-18	12:15 -	13:15	27.7	79	0.06335	2546	42.43			
Note:			shnick TEOM®								
	 Total Count was logged by Laser Dust Monitor Count/minute was calculated by (Total Count/60) 										
	3. Courivillinut	e was calcula	ated by (1	otal Coul	1000)						
By Linea	ar Regression of	Y or X									
Slope	(K-factor):	(0.0015								
Correla	ation coefficient:		0.9994								
Validit	y of Calibration F	Popord:	5 May 20	10							
validity	y of Calibration P	record	5 May 201	19							
Remark	s:										
į.											
13											
					. /						
QC Re	eviewer: YW F	iuna	Signat	nre.	N	Date	e: 07 May	, 2018			
~ J 1 10	7777	4.19	Cignat	u.c			. Or way	2010			

EQUIPMENT CALIBRATION RECORD

Type:			_	Laser D	ust Moni	tor			
Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting:				SIBATA					
				LD-3					
				A.005.10a					
Sensi	tivity Adjustment	Scale Setti	ng: _	753 CP	IVI				
Opera	ator:		:	Mike Shek (MSKM)					
Standa	rd Equipment								
Equip	ment:	Rupp	recht & Pa	tashnick	TEOM®				
Venue				Pui Ying Secondary School)					
Model No.: Series 1400									
		Conti	ontrol: 140AB219899803						
		Sens	or: 120	00C1436	59803	K₀: 12500			
Last C	Calibration Date*:	3 <i>Ma</i>	y 2018						
*Remar	ks: Recommend	led interval	for hardwa	re calibra	tion is 1 y	/ear			
Calibra	tion Result	CANCEL							
Sensit	tivity Adjustment	Scale Settii	na (Before	Calibratio	on):	753 CP	M		
	tivity Adjustment					753 CP			
Hour	Date	Time		Ambient		Concentration ¹	Total	Count/	
	(dd-mm-yy)				dition	(mg/m ³)	Count ²	Minute ³	
				Temp (°C)	R.H. (%)	Y-axis		X-axis	
1	05-05-18	10:00 -	11:00	27.7	80	0.05415	2164	36.06	
2	05-05-18	11:00 -	12:00	27.7	80	0.05973	2375	39.58	
3	05-05-18		- 13:00	27.7	79	0.06718	2693	44.88	
4	05-05-18	13:00 -	14:00	27.7	80	0.06486	2587	43.11	
Note:						shnick TEOM®			
	Total CountCount/minut								
Ry Line	ar Regression of	V or Y							
		1017	0.0015						
			0.9986						
Validit	y of Calibration F	Record:	5 May 20	19	-				
,	,	_	·, ·						
Remark	s:								

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

18CA0914 03

Page

of

2

Item tested

Description Manufacturer:

Sound Level Meter (Type 1)

Microphone

B&K

B&K 4188

Type/Model No.: Serial/Equipment No.:

2238 2800927

Adaptors used:

2791211

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No .: Date of receipt:

14-Sep-2018

Date of test:

17-Sep-2018

Reference equipment used in the calibration

Description:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator

Model: B&K 4226 DS 360

2288444

23-Aug-2019 24-Apr-2019

CIGISMEC

Signal generator

DS 360

33873 61227

23-Apr-2019

CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3 between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

Feng Junqi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

18-Sep-2018

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev C/01/02/2007

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0914 03

Page

2

Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Took	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Test:	Subtest.	Status.	Unicertainty (ub)	racioi
Self-generated noise	Α	Pass	0.3	
	С	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
•	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	
	AND STATE OF THE S			

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
•	Weighting A at 8000 Hz	Pass	0.5	

3. Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated

Calibrated by:

Date:

Fung Chi Yip

17-Sep-2018

Checked by:

Shek Kwong Tal

Date:

18-Sep-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co. Ltd

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

18CA0406 02-01

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1) B & K

Microphone B & K

Type/Model No.: Serial/Equipment No.: 2238 2285692 4188 2250455

Adaptors used:

-

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.: Date of receipt:

06-Apr-2018

....

Date of test:

10-Apr-2018

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator B&K 4226 DS 360 2288444 33873 08-Sep-2018 25-Apr-2018 CIGISMEC CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

50 ± 10 %

Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

11-Apr-2017

Company Chop:

SENGINEER SELWING COMPANY OF THE SELWING COMPANY OF THE SERVING COM

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co. Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0406 02-01

Page

.

2

,

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	Α	Pass	0.3	
	A C	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip 0-Apr-2018 Checked by:

Date:

Lam Tze Wai 11-Apr-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No CARP152-2/Issue 1/Rev C/01/02/2007

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

18CA0406 02-02

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B & K 4231

Type/Model No.: Serial/Equipment No.:

3006428 / N004.03

Adaptors used:

22

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer:

-

Request No.: Date of receipt:

06-Apr-2018

Date of test:

09-Apr-2018

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	11-Apr-2018	SCL
Preamplifier	B&K 2673	2743150	05-May-2018	CEPREI
Measuring amplifier	B&K 2610	2346941	03-May-2018	CEPREI
Signal generator	DS 360	33873	25-Apr-2018	CEPREI
Digital multi-meter	34401A	US36087050	25-Apr-2018	CEPREI
Audio analyzer	8903B	GB41300350	21-Apr-2018	CEPREI
Universal counter	53132A	MY40003662	22-Apr-2018	CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

50 ± 10 %

Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Jun Q

Approved Signatory:

Date:

11-Apr-2018

Company Chop:

SENGINEER SO COMPANY OF STOCK STOCK

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument.

Soils & Materials Engineering Co., Ltd

Form No CARP156-1/Issue 1/Rev D/01/03/2007

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0406 02-02

Page:

2

of

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Hz	dB	dB	dB
1000	94.00	94.20	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.015 dB

Estimated expanded uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 999.96 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.4 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Fung Chi Yip

Checked by:

Lam Tze Wai

Date: 09-Apr-2018

Date:

11-Apr-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No CARP156-2/Issue 1/Rev C/01/05/2005

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:

HK1860334

SUB-BATCH:

0

DATE OF ISSUE:

26-Nov-2018

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name:

YSI

Model No.:

6820 V2

Serial No.:

00H1019

Equipment No.:

W.026.09

Date of Calibration:

20 November, 2018

Date of Next Calibration:

20 February, 2019

PARAMETERS:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)
146.9	140.0	-4.7
6667	6660	-0.1
12890	12960	+0.5
58670	58500	-0.3
	Tolerance Limit (%)	±10.0

Dissolved Oxygen

Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.42	3.45	+0.03
5.51	5.50	-0.01
7.48	7.52	+0.04
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	3.97	-0.03
7.0	7.02	+0.02
10.0	10.02	+0.02
	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu

Assistant Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:

HK1860334

SUB-BATCH:

0

DATE OF ISSUE:

26-Nov-2018

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name:

YSI

Model No.:

6820 V2

Serial No.:

00H1019

Equipment No.:

W.026.09

Date of Calibration:

20 November, 2018

Date of Next Calibration:

20 February, 2019

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	4.0	+0.0
10	9.5	-5.0
20	19.6	-2.0
50	49.8	-0.4
100	100.5	+0.5
	Tolerance Limit (%)	±10.0

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	9.99	-0.1
20	19.96	-0.2
30	29.95	-0.2
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu

Assistant Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:

HK1860334

SUB-BATCH:

0

DATE OF ISSUE:

26-Nov-2018

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name:

YSI

Model No.:

6820 V2

Serial No.:

00H1019

Equipment No.: Date of Calibration: W.026.09

20 November, 2018

Date of Next Calibration:

20 February, 2019

PARAMETERS:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	10.04	+0.0
19.5	19.48	-0.0
38.5	38.46	-0.0
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

16:5

Ms. Lin Wai Yu

Assistant Manager - Inorganic

APPENDIX F

EM&A Monitoring Schedules

Contract No. HY/2014/07 Central Kowloon Route – Kai Tak West Impact Environmental Monitoring Schedule for February 2019

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Feb	2-Feb
						24-hour TSP
						1-hour TSP
	. = .					
3-Feb	4-Feb	5-Feb	6-Feb	7-Feb	8-Feb	9-Fel
					24-hour TSP	
					1-hour TSP	
					Noise	
40 5-1	44 5-1	40 F-h	40 5-1	44 5-6	45 5.1	40 5-1
10-Feb	11-Feb	12-Feb	13-Feb 24-hour TSP	14-Feb	15-Feb	16-Fel
			1-hour TSP Noise			
			Noise			
17-Feb	18-Feb	19-Feb	20-Feb	21-Feb	22-Feb	23-Fel
		24-hour TSP				
		1-hour TSP				
		Noise				
24-Feb		26-Feb	27-Feb	28-Feb		
	24-hour TSP					
	1-hour TSP					
	Noise					

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

E-A14a: Block B of Merit Industrial Centre

Noise Monitoring Stations

E-N12a: 19 Hing Yan Street

E-N21a: Block B of Merit Industrial Centre

Monitoring Frequency

24-hour TSP: Once every 6 days

1-hour TSP: 3 times every 6 days (as required in case of complaints)

Monitoring Frequency

Once per week

Contract No. HY/2014/07

Central Kowloon Route - Kai Tak West

Tentative Impact Environmental Monitoring Schedule for March 2019

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Mar	2-Mar
						24-hour TSP
						1-hour TSP
3-Mar	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar	9-Mar
	-			=	24-hour TSP	
					1-hour TSP	
					Noise	
10-Mar	11-Mar	12-Mar	13-Mar		15-Mar	16-Mar
				24-hour TSP 1-hour TSP		
				Noise		
				140136		
17-Mar	18-Mar	19-Mar	20-Mar	21-Mar	22-Mar	23-Mar
			24-hour TSP			
			1-hour TSP			
			Noise			
24-Mar	25-Mar	26-Mar	27-Mar	28-Mar	29-Mar	30-Mar
		24-hour TSP				24-hour TSP
		1-hour TSP				1-hour TSP
		Noise				
24.14						
31-Mar						

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Block B of Merit Industrial Centre E-A14a:

Noise Monitoring Stations

19 Hing Yan Street E-N12a:

Block B of Merit Industrial Centre E-N21a:

Monitoring Frequency

24-hour TSP: Once every 6 days

1-hour TSP: 3 times every 6 days (as required in case of complaints)

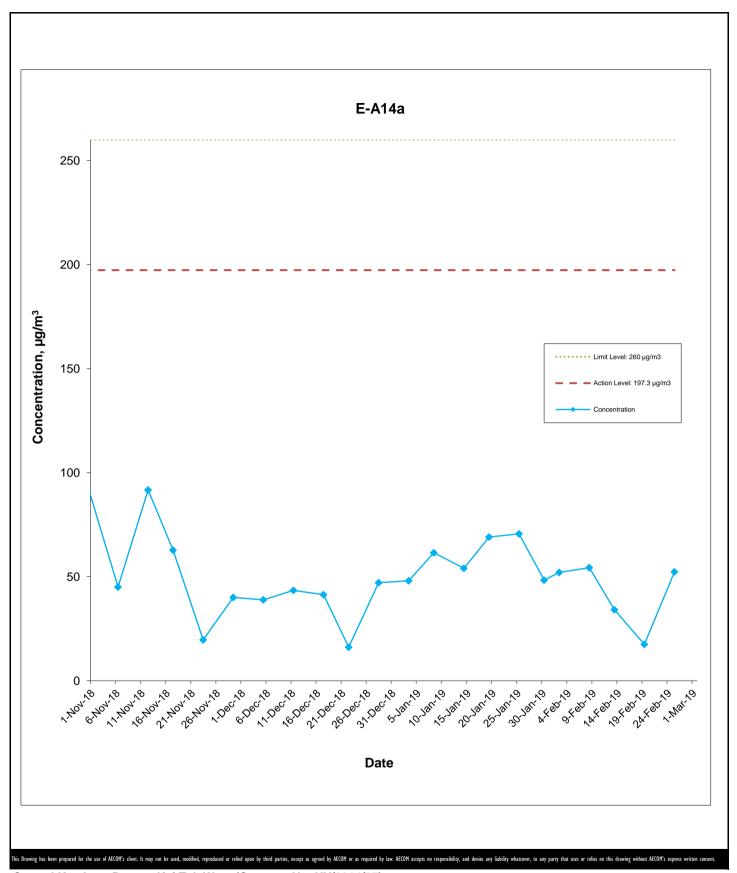
Monitoring Frequency

Once per week

APPENDIX G

Air Quality Monitoring Results and their Graphical Presentations

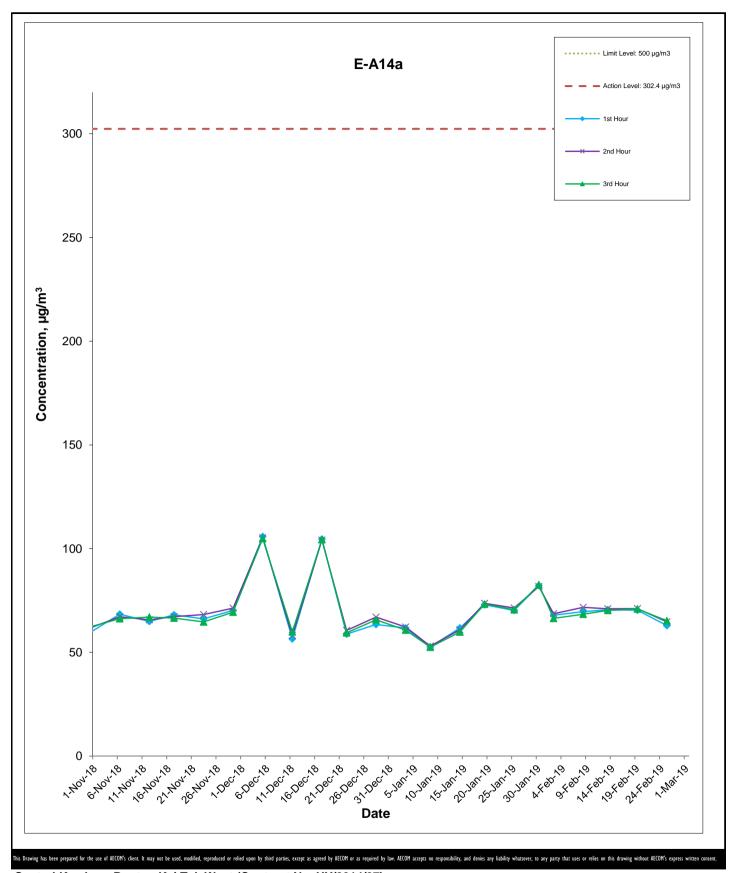
Appendix G Air Quality Monitoring Results


24-hour TSP Monitoring Results at Station E-A14a (Block B, Merit Industrial Centre)

	Weather	Air	Atmospheric	Flow F	Rate (m³/min.)	Av. flow	Total vol.	Filter W	/eight (g)	Particulate	Elaps	e Time	Sampling	Conc.
Date	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
2-Feb-19	Sunny	18.6	1018.4	1.31	1.31	1.31	1892.2	2.6603	2.7588	0.0985	7626.32	7650.32	24.00	52.1
8-Feb-19	Sunny	21.7	1015.3	1.31	1.31	1.31	1892.2	2.6733	2.7761	0.1028	7650.32	7674.32	24.00	54.3
13-Feb-19	Sunny	21.1	1021.8	1.31	1.31	1.31	1892.2	2.6546	2.7191	0.0645	7674.32	7698.32	24.00	34.1
19-Feb-19	Sunny	20.3	1016.8	1.31	1.31	1.31	1892.2	2.6573	2.6904	0.0331	7698.32	7722.32	24.00	17.5
26-Feb-19	Cloudy	18.7	1017.6	1.31	1.31	1.31	1892.2	2.6252	2.7242	0.0990	7722.32	7746.32	24.00	52.3
													Average	42.1
													Minimum	17.5
													Maximum	54.3

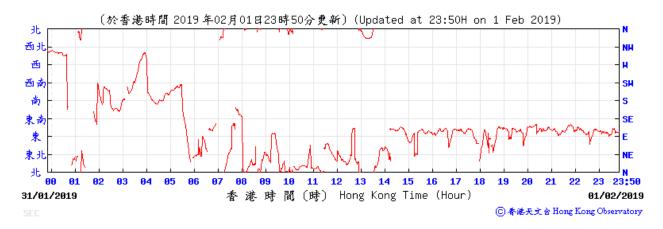
Appendix G Air Quality Monitoring Results

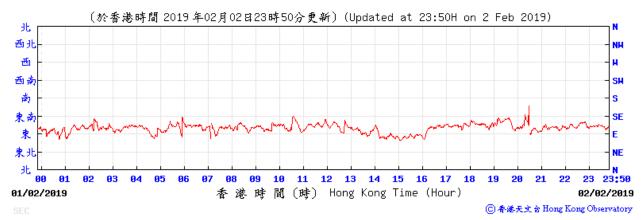
1-hour TSP Monitoring Results at Station E-A14a (Block B, Merit Industrial Centre)

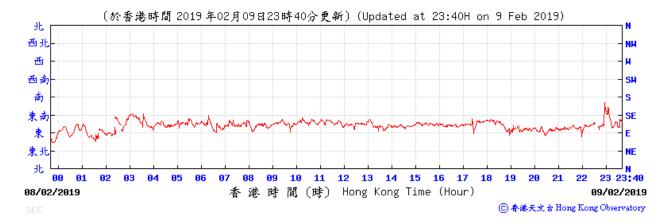

	Start Time	Weather	1st Hour Conc.	2nd Hour Conc.	3rd Hour Conc.
Date	(hh:mm)	Condition	Conc. (μg/m ³)	Conc. (μg/m ³)	Conc. (μg/m³)
2-Feb-19	13:35	Sunny	67.9	68.6	66.4
8-Feb-19	13:15	Sunny	69.6	71.7	68.4
13-Feb-19	10:20	Sunny	70.5	71.0	70.2
19-Feb-19	10:05	Sunny	70.3	71.1	70.9
25-Feb-19	10:59	Fine	62.9	64.7	65.2
				Average	68.6
				Min	62.9
				Max	71.7

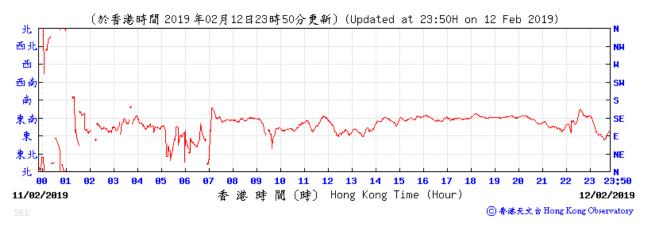
Central Kowloon Route - Kai Tak West (Contract No. HY/2014/07)

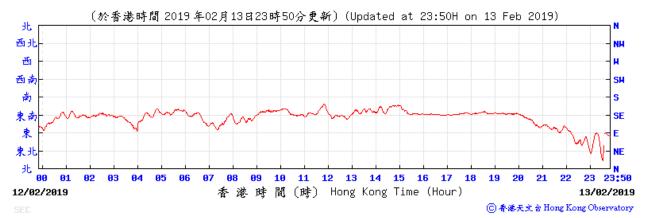
Date: March 2019 Appendix G

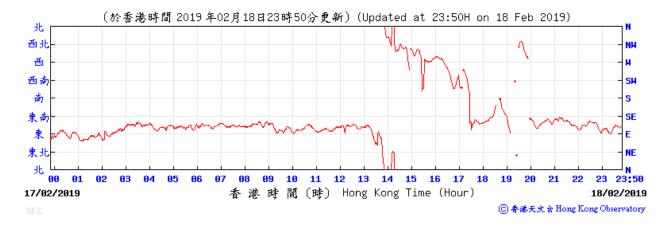


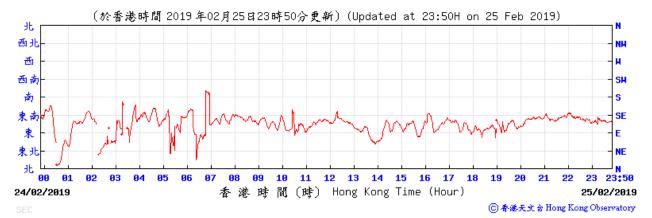

Central Kowloon Route - Kai Tak West (Contract No. HY/2014/07)

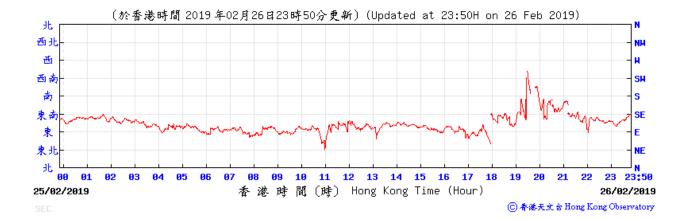

Date: March 2019 Appendix G

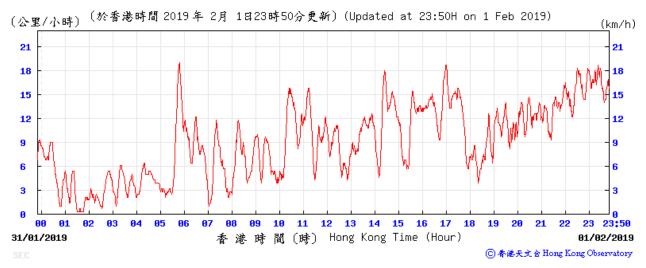

Data of Wind Direction Extracted from Kai Tak Wind Station of the Hong Kong Observatory

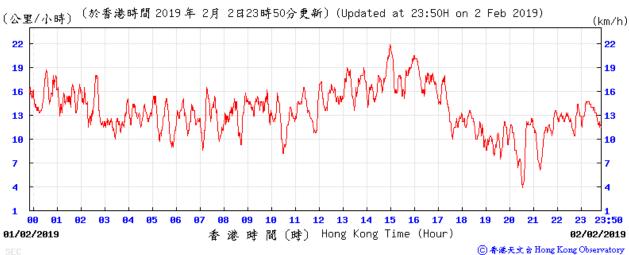






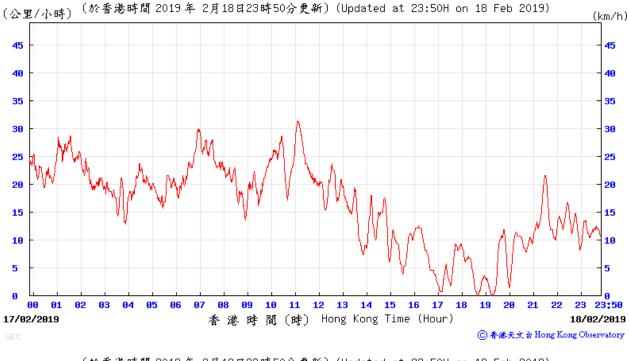


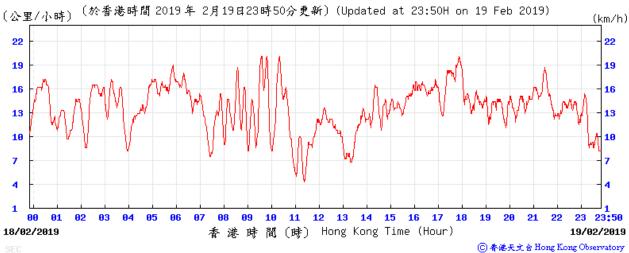


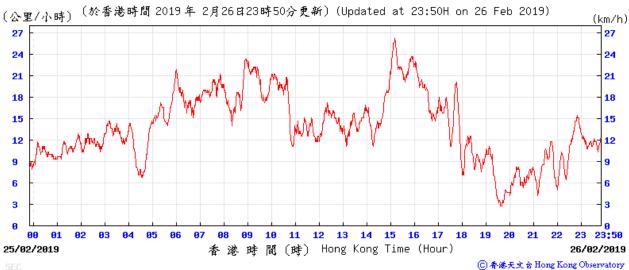




Data of Wind Speed Extracted from Kai Tak Wind Station of the Hong Kong Observatory







APPENDIX H

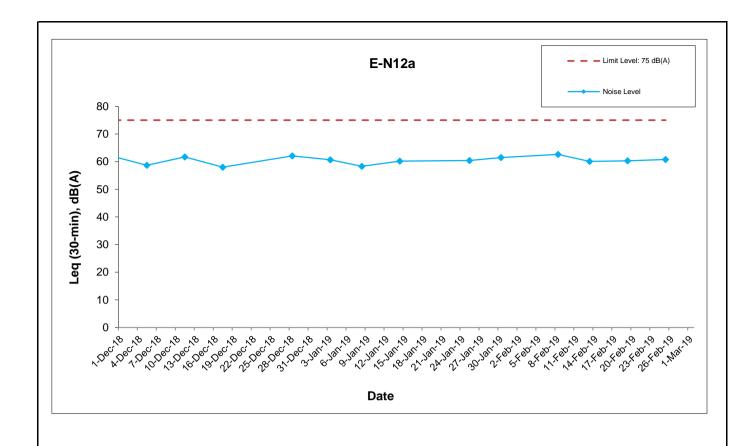
Noise Monitoring Results and their Graphical Presentations

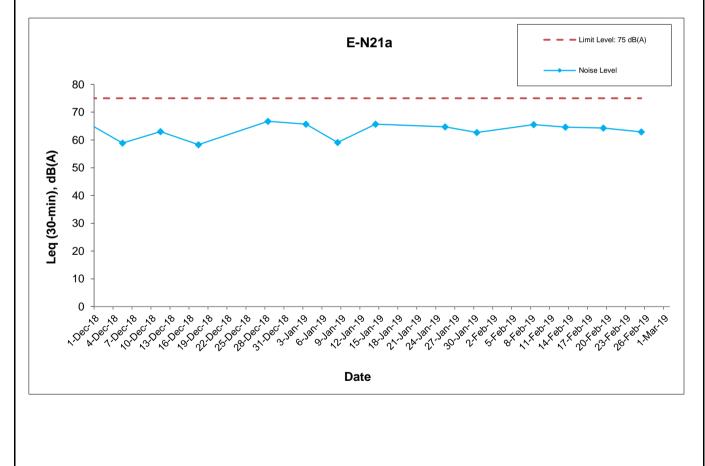
Appendix H Regular Construction Noise Monitoring Results

Daytime Noise Monitoring Results at Station E-N12a (19 Hing Yan Street)

Date	Weather	Nois	e Level for	30-min, d	B(A) +	Limit Level,	Exceedance
Date	Condition	Time	L90	L10	Leq	dB(A)	(Y/N)
8-Feb-19	Sunny	13:30	60.0	63.5	62.6	75	N
13-Feb-19	Sunny	10:25	58.4	62.3	60.1	75	N
19-Feb-19	Sunny	10:55	58.3	62.5	60.3	75	N
25-Feb-19	Fine	15:10	58.2	62.7	60.8	75	N

Daytime Noise Monitoring Results at Station E-N21a (Block B of Merit Industrial Centre)


	Weather	Nois	e Level for	[.] 30-min, d	B(A) #	Limit Level,	Exceedance
Date	Condition	Time	L90	L10	Leq	dB(A)	(Y/N)
8-Feb-19	Sunny	13:15	64.0	66.5	65.5	75	N
13-Feb-19	Sunny	10:15	62.5	66.7	64.6	75	N
19-Feb-19	Sunny	10:00	62.1	66.5	64.3	75	N
25-Feb-19	Fine	14:19	60.7	64.3	62.9	75	N


⁺ - Façade measurement.

^{# -} A correction of +3dB(A) was made to the free field measurement.

^{++ -} Free field measurement

^{* -} Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school

Central Kowloon Route - Kai Tak West (Contract No. HY/2014/07)

Date: March 2019 Appendix H

APPENDIX I

Water Monitoring Results

Water Quality Monitoring Results at CS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	s (mg/L)	С	opper (μm/	L)	To	tal PAH (µr	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jan-19	Cloudy	Moderate	22:07	Surface	1	17.7 17.7 17.7	17.7	33.7 33.7 33.7	33.7	8.22 8.24 8.23	8.23	79.10 78.50 81.50	79.70	5.70 5.65 5.87	5.74		3.5 3.4 3.4	3.4		1.8 1.2 1.2	1.4		4.0 5.0 4.0	4.3		<1.6 <1.6 <1.6	1.6	
				Middle	10.5	17.7 17.7	17.6	33.7 33.8	33.7	8.25 8.24	8.24	78.40 80.60 79.00	79.33	5.65 5.81 5.69	5.72	5.73	3.5 3.4	3.4	3.47	1.6	2.0	1.63	5.0 5.0	5.0	4.56	<1.6 <1.6	1.6	1.60
				Bottom	20.0	17.6 17.7 17.7	17.6	33.8 33.8 33.8	33.8	8.24 8.24 8.24	8.24	80.00 79.00	79.10	5.76 5.69	5.70	5.70	3.4 3.5 3.5	3.5		1.8 1.4	1.5		5.0 4.0 4.0	4.3		<1.6 <1.6 <1.6	1.6	
4-Jan-19	Sunny	Calm	23:23	Surface	1	17.6 18.7 18.7	18.7	33.8 33.1 33.1	33.1	8.25 8.04 8.04	8.04	78.30 94.00 94.10	94.03	7.19 7.20	7.19		3.6 1.9 2.0	1.9		3.0 2.7	3.0		4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
				Middle	10.6	18.7 18.7 18.7	18.7	33.1 33.1 33.1	33.1	8.03 8.04 8.04	8.04	94.00 93.70 93.80	93.77	7.19 7.16 7.17	7.17	7.18	1.9 1.9 2.0	2.0	2.03	3.2 3.0 3.0	3.1	3.11	4.0 4.0 4.0	4.0	4.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	20.1	18.7 18.7 18.8	18.7	33.1 33.2 33.2	33.2	8.03 8.02 8.04	8.03	93.80 93.80 93.70	93.73	7.17 7.16 7.15	7.16	7.16	2.0 2.3 2.2	2.2		3.3 3.6 3.3	3.3		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
8-Jan-19	Fine	Moderate	0:56			18.7 18.3		33.2 33.7		8.04 8.28		93.70 94.20		7.16 7.22			2.1 1.8			2.9 4.2			4.0 5.0			<1.6 <1.6		
				Surface	1	18.3 18.3	18.3	33.7 33.7	33.7	8.28 8.28	8.28	95.70 93.40	94.43	7.33 7.16	7.24	7.15	1.6 1.9	1.8		4.7 4.6	4.5		5.0 5.0	5.0		<1.6 <1.6	1.6	
				Middle	11.1	18.3 18.3 18.3	18.3	33.8 33.8 33.7	33.7	8.29 8.28 8.28	8.28	92.40 91.90 92.00	92.10	7.09 7.05 7.05	7.06		2.2 2.2 2.1	2.2	2.10	4.3 4.3 5.1	4.6	4.79	6.0 5.0 6.0	5.7	5.22	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	20.9	18.3 18.3 18.3	18.3	33.8 33.8 33.8	33.8	8.28 8.28 8.29	8.28	92.40 91.70 92.80	92.30	7.09 7.03 7.12	7.08	7.08	2.3 2.3 2.5	2.4		5.0 5.6 5.3	5.3		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
10-Jan-19	Fine	Moderate	2:59	Surface	1	18.5 18.5 18.5	18.5	33.4 33.4 33.4	33.4	8.33 8.35 8.36	8.35	90.80 93.20 90.70	91.57	6.97 7.15 6.97	7.03		2.5 2.4 2.5	2.5		2.4 2.4 1.7	2.2		5.0 6.0 6.0	5.7		<1.6 <1.6 <1.6	1.6	
				Middle	11.1	18.5 18.5 18.5	18.5	33.4 33.4 33.4	33.4	8.35 8.37 8.34	8.35	88.80 89.40 88.50	88.90	6.83 6.87 6.81	6.84	6.93	3.0 3.2 3.0	3.1	2.91	1.7 1.2 1.4	1.4	1.64	6.0 6.0 6.0	6.0	5.89	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	21.1	18.5 18.5 18.5	18.5	33.4 33.4 33.4	33.4	8.34 8.35 8.37	8.35	88.40 89.10 89.20	88.90	6.80 6.86 6.86	6.84	6.84	3.2 3.1 3.3	3.2		1.3 1.3 1.4	1.3		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	
12-Jan-19	Cloudy	Moderate	2:14	Surface	1	18.2 18.2	18.2	32.7 32.7	32.7	8.18 8.17	8.18	98.90 95.80	97.57	6.59 6.38	6.50		2.5 2.6	2.6		4.6 5.5	5.0		5.0 5.0	5.0		<1.6 <1.6	1.6	
					·	18.2 18.2		32.7 32.9		8.18 8.16		98.00 96.20		6.53 6.41		6.46	2.6 2.7			4.8 5.1			5.0 5.0			<1.6 <1.6		
				Middle	10.6	18.2 18.2 18.2	18.2	32.9 32.9 32.9	32.9	8.15 8.16 8.14	8.16	95.50 97.50 95.10	96.40	6.36 6.50 6.34	6.42		2.7 2.7 2.5	2.7	2.63	5.3 5.6 4.1	5.3	4.83	5.0 5.0 5.0	5.0	5.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	20.1	18.2 18.2	18.2	33.0 33.0	32.9	8.16 8.16	8.15	95.50 96.60	95.73	6.37 6.44	6.38	6.38	2.7 2.7	2.6		4.2 4.3	4.2		5.0 5.0	5.0		<1.6 <1.6	1.6	
15-Jan-19	Sunny	Calm	4:30	Surface	1	18.8 18.8 18.8	18.8	32.3 32.3 32.3	32.3	7.97 7.97 7.97	7.97	92.90 92.70 93.30	92.97	7.14 7.12 7.17	7.14	7.14	2.2 2.2 2.1	2.2		0.8 1.4 1.2	1.1		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	
				Middle	10.5	18.8 18.8 18.8	18.8	32.3 32.3 32.3	32.3	7.97 7.97 7.97	7.97	92.80 92.40 93.10	92.77	7.13 7.10 7.15	7.13	7.14	2.3 2.3 2.2	2.3	2.27	0.9 1.1 1.4	1.1	0.99	6.0 6.0 6.0	6.0	6.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	20.0	18.8 18.8 18.8	18.8	32.3 32.3 32.3	32.3	7.97 7.97 7.97	7.97	93.10 92.80 92.50	92.80	7.15 7.13 7.10	7.13	7.13	2.3 2.4 2.4	2.4		0.7 0.6 0.8	0.7		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	

Water Quality Monitoring Results at CS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ture (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	ided Solids	s (mg/L)	С	opper (µm.	/L)	Tot	tal PAH (µm	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
17-Jan-19	Fine	Moderate	21:54			18.5		33.6		8.25		91.80		7.04			2.0			3.2			8.0			<1.6		
				Surface	1	18.5	18.5	33.6	33.6	8.25	8.25	91.60	91.60	7.02	7.02		1.8	1.9		2.3	2.7		8.0	7.7		<1.6	1.6	Ì
						18.6		33.6		8.25		91.40		7.01		7.01	1.8			2.5			7.0		_	<1.6		1
						18.2		33.6		8.26		90.50		6.98		7.01	2.0			2.2			8.0			<1.6	1 1	i
				Middle	11.7	18.2	18.2	33.6	33.6	8.26	8.26	90.60	90.70	6.99	6.99		2.1	2.1	2.14	2.3	2.2	2.30	8.0	8.0	7.89	<1.6	1.6	1.60
						18.3		33.6		8.26		91.00		7.01			2.2			2.1		ł	8.0		4	<1.6	₩-	1
				Bottom	22.4	18.2 18.3	18.2	33.6 33.5	33.5	8.27 8.25	8.26	90.60 91.20	90.87	6.99 7.02	7.00	7.00	2.5 2.3	2.5		1.8 1.7	2.0		8.0 8.0	8.0		<1.6 <1.6	1.6	1
				Douoiii		18.3	10.2	33.5	00.0	8.25	0.20	90.80	00.07	7.00	7.00	7.00	2.6	2.0		2.6	2.0		8.0	0.0		<1.6	1.0	Ì
19-Jan-19	Fine	Moderate	0:21			18.2		33.6		8.28		95.60		7.08			2.6			1.0			5.0			<1.6		
				Surface	1	18.2	18.2	33.6	33.6	8.27	8.27	94.50	95.50	7.01	7.08		2.5	2.6		0.9	1.1		6.0	5.3		<1.6	1.6	Ì
						18.2		33.6		8.26		96.40		7.14		6.96	2.6			1.3		1	5.0			<1.6		Ĺ
						18.0		33.6		8.26		92.40		6.88		0.50	2.8			0.6			5.0			<1.6		1
				Middle	11.2	18.0	18.0	33.6	33.6	8.28	8.27	92.10	91.97	6.85	6.84		2.8	2.7	2.86	1.1	8.0	1.00	5.0	5.0	5.22	<1.6	1.6	1.60
						18.0		33.6		8.27		91.40		6.80			2.6			0.7			5.0		4	<1.6	<u> </u>	4
				Bottom	21.4	18.0 18.0	18.0	33.6 33.6	33.6	8.27 8.28	8.27	92.20 93.10	92.57	6.86	6.89	6.89	3.2 3.3	3.3		0.8	1.1		5.0	5.3		<1.6	1.6	Ì
				DOLLOTTI	21.4	18.1	10.0	33.6	33.0	8.26	0.21	93.10	92.57	6.93 6.87	0.09	0.09	3.3	3.3		1.2	1.1		5.0 6.0	5.5		<1.6 <1.6	1.0	Ì
22-Jan-19	Fine	Moderate	1:26			17.8		32.5		8.17		93.50		6.79			2.3			3.7			4.0			<1.6	\vdash	
LL oan 10	0	Moderate	1.20	Surface	1	17.8	17.8	32.5	32.5	8.17	8.17	93.20	93.80	6.77	6.81		2.5	2.3		3.5	3.7		5.0	4.3		<1.6	1.6	Ì
						17.8		32.6		8.17		94.70		6.87		6.78	2.2			3.9			4.0			<1.6	ļ ,	Ì
						17.8		32.7		8.18		92.90		6.74		0.70	2.8			5.6		1	4.0			<1.6		Ì
				Middle	10.8	17.8	17.8	32.7	32.7	8.18	8.18	93.30	93.03	6.77	6.75		2.6	2.7	2.82	5.4	5.6	5.00	5.0	4.3	4.44	<1.6	1.6	1.60
						17.8		32.7		8.17		92.90		6.74			2.6			5.9			4.0		4	<1.6	<u> </u>	4
				Bottom	20.6	17.8 17.8	17.8	32.7 32.7	32.7	8.18	8.18	93.10 93.70	93.20	6.76	6.76	6.76	3.5	3.5		5.4 5.5	5.7		5.0 5.0	4.7		<1.6 <1.6	1.6	Ì
				Dolloin	20.0	17.8	17.0	32.7	32.1	8.18 8.18	0.10	92.80	33.20	6.80 6.73	0.70	0.70	3.5 3.4	3.3		6.1	5.7		4.0	4.7		<1.6	1.0	Ì
24-Jan-19	Fine	Moderate	1:37			18.4		31.9		8.01		93.80		7.28			2.4			6.6			8.0			<1.6	\vdash	
21 00.11	0	Moderate	1.01	Surface	1	18.4	18.4	31.9	31.9	8.00	8.01	95.60	95.87	7.44	7.45		2.6	2.5		7.1	6.3		8.0	8.0		<1.6	1.6	Ì
						18.4		31.9		8.01		98.20		7.64		7.32	2.4			5.2			8.0			<1.6	j j	Ì
						18.3		31.9		8.00		92.10		7.17		7.52	2.6			5.9		1	8.0			<1.6		Ì
				Middle	11.1	18.3	18.3	31.9	31.9	8.00	8.00	92.60	92.40	7.20	7.18		2.5	2.5	2.58	4.4	5.3	5.44	7.0	7.7	7.89	<1.6	1.6	1.60
						18.3		31.9		8.01		92.50		7.18			2.4			5.6			8.0		4	<1.6	<u> </u>	4
				Bottom	21.2	18.3 18.3	18.3	31.9 31.9	31.9	8.01 8.01	8.01	91.70 92.10	91.87	7.14 7.15	7.14	7.14	2.7 2.9	2.8		4.9 5.5	4.7		8.0 8.0	8.0		<1.6 <1.6	1.6	
				Dolloin	21.2	18.3	10.5	31.9	31.3	8.01	0.01	91.80	31.07	7.13	7.14	7.14	2.9	2.0		3.8	4.7		8.0	0.0		<1.6	1.0	Ì
26-Jan-19	Fine	Moderate	3:19			18.5		32.0		7.98		91.60		7.12			2.5	1		4.0			5.0			<1.6	\vdash	
				Surface	1	18.5	18.5	32.0	32.0	7.99	7.99	92.00	91.90	7.15	7.14		2.3	2.4		4.8	4.4		5.0	5.0		<1.6	1.6	Ì
						18.5		32.0		7.99		92.10		7.16		7.13	2.3			4.3			5.0			<1.6	<u> </u>	<u> </u>
						18.4		32.1		8.01		90.80		7.08		7.13	2.8			4.0			6.0			<1.6		1
				Middle	11.1	18.4	18.4	32.1	32.1	8.01	8.01	91.40	91.27	7.12	7.11		2.8	2.7	2.68	4.4	4.0	4.27	6.0	6.0	6.00	<1.6	1.6	1.60
						18.4 18.4		32.1		8.01		91.60		7.12			2.6			3.7 4.7		ł	6.0		-	<1.6	\vdash	į.
				Bottom	21.2	18.4	18.4	32.1 32.1	32.1	8.01 8.02	8.01	90.20 90.80	90.77	7.04 7.08	7.08	7.08	2.9 2.9	2.9		4.7	4.4		7.0 7.0	7.0		<1.6 <1.6	1.6	Ì
				Dottom	21.2	18.4	10.4	32.1	02.1	8.01	0.01	91.30	30.77	7.11	7.00	7.00	3.0	2.5		3.9	7.7		7.0	7.0		<1.6	1.0	
29-Jan-19	Cloudy	Moderate	21:52			18.4		32.6		8.15		96.50		6.47			2.4			2.7			4.0			<1.6		
			-	Surface	1	18.4	18.4	32.6	32.6	8.15	8.15	96.10	97.20	6.44	6.52		2.5	2.4		2.1	2.4		4.0	4.0		<1.6	1.6	Ì
						18.4		32.6		8.15		99.00		6.64		6.49	2.4			2.3			4.0			<1.6		j
						18.4		32.6		8.15		96.00		6.43		0.43	2.5			2.1			4.0			<1.6		Ì
				Middle	10.3	18.3	18.3	32.6	32.6	8.15	8.15	96.10	96.53	6.44	6.47		2.5	2.5	2.49	2.7	2.6	2.74	4.0	4.0	4.11	<1.6	1.6	1.60
						18.4		32.6		8.16		97.50		6.54			2.5			2.9		ł	4.0		-	<1.6	\vdash	į.
				Bottom	19.5	18.4 18.4	18.4	32.6 32.6	32.6	8.15 8.16	8.15	95.70 97.00	96.20	6.41 6.50	6.44	6.44	2.5 2.5	2.5		3.5 3.2	3.3		4.0 4.0	4.3		<1.6 <1.6	1.6	Ì
				Dolloin	19.5	18.4	10.4	32.6	32.0	8.14	0.13	95.90	30.20	6.42	0.44	0.44	2.5	2.5		3.2	3.3		5.0	4.5		<1.6	1.0	Ì
31-Jan-19	Fine	Moderate	23:21			18.6		31.9		8.03		90.90		6.89			1.8			2.3			5.0			<1.6	\vdash	\vdash
			I	Surface	1	18.6	18.6	31.9	31.9	8.03	8.03	90.40	90.67	6.86	6.88	l	1.8	1.8		2.2	2.2	l	5.0	5.0		<1.6	1.6	1
			l			18.6		31.9		8.03	L	90.70	L	6.88		6.87	1.8	<u></u>		2.1]	5.0]	<1.6	<u> </u>	
]	1			18.6		31.9		8.04		90.50		6.86		0.07	2.0		l	1.9		1	5.0		1	<1.6		1
				Middle	10.9	18.6	18.6	31.9	31.9	8.04	8.04	90.10	90.50	6.82	6.86	1	1.9	2.0	2.01	1.4	2.1	2.43	5.0	5.0	5.00	<1.6	1.6	1.60
						18.6		31.9		8.04	<u> </u>	90.90	<u> </u>	6.90		<u> </u>	2.0	 	l	3.0		1	5.0	<u> </u>	4	<1.6	└─ ─	4
			l	Bottom	20.9	18.6 18.6	18.6	31.9 31.9	31.9	8.04	8.04	90.00	88.73	6.83 6.67	6.73	6.73	2.3	2.3		3.1 2.8	3.0	l	5.0 5.0	5.0		<1.6 <1.6	1.6	1
			l	DOMOITI	20.9	18.6	10.0	31.9	31.3	8.04 8.04	0.04	87.90 88.30	00.73	6.70	0.73	0.73	2.3 2.2	2.0		3.1	3.0	l	5.0	3.0		<1.6	1.0	1
						10.0		01.0		0.07		00.00		0.70			4.4	<u> </u>		0.1			0.0			\ 1.0		

Water Quality Monitoring Results at CS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	p	Н	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Τι	urbidity(NT	U)	Susper	nded Solids	s (mg/L)	C	opper (µm	/L)	To	tal PAH (µr	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
3-Jan-19	Cloudy	Moderate	6:01			17.8		33.7		8.17		80.60		5.81			3.0			1.4			5.0			<1.6		
				Surface	1	17.8	17.8	33.7	33.7	8.18	8.17	80.50	80.53	5.80	5.80		3.0	3.0		1.1	1.3		5.0	4.7		<1.6	1.6	
						17.8		33.7		8.17		80.50		5.80		5.79	2.9			1.4			4.0		ļ	<1.6		
				Manager 1	40.0	17.8	47.0	33.7	20.7	8.20	0.40	80.30	00.00	5.78	5.70		2.9	0.0	0.04	1.6	4.5	4.00	5.0	4.0	4.50	<1.6	4.0	4.00
				Middle	10.9	17.8 17.8	17.8	33.7 33.7	33.7	8.18 8.18	8.19	80.50 80.20	80.33	5.80 5.77	5.78		2.9 2.9	2.9	2.94	1.3	1.5	1.63	4.0 4.0	4.3	4.56	<1.6	1.6	1.60
						17.8		33.7		8.20		79.80		5.75			2.9			1.6 2.0			5.0		ł	<1.6 <1.6		
				Bottom	20.6	17.8	17.8	33.7	33.7	8.17	8.18	80.40	80.07	5.79	5.77	5.77	2.9	3.0		2.0	2.1		4.0	4.7		<1.6	1.6	
				Dottom	20.0	17.8	17.0	33.7	55.7	8.17	0.10	80.00	00.07	5.76	5.77	5.77	3.1	0.0		2.3	2.1		5.0	4.7		<1.6	1.0	
5-Jan-19	Sunny	Calm	7:29			18.8		33.1		8.08		94.70		7.43			2.2			3.3			4.0			<1.6		
0 04.1 10	Cumy	Cum	7.20	Surface	1	18.8	18.8	33.1	33.1	8.08	8.08	94.70	94.67	7.44	7.43		2.1	2.1		3.3	3.2		4.0	4.0		<1.6	1.6	
						18.8		33.1		8.08		94.60		7.42		7.40	2.1			3.1			4.0			<1.6		
						18.8		33.1		8.08		94.40		7.42		7.42	2.3			3.3			4.0		1	<1.6		
				Middle	11.0	18.8	18.8	33.1	33.1	8.08	8.08	94.50	94.43	7.41	7.41		2.1	2.2	2.20	3.2	3.2	3.28	4.0	4.0	4.00	<1.6	1.6	1.60
						18.8		33.1		8.08		94.40		7.41			2.2			3.2			4.0			<1.6		
						18.8		33.1		8.08		94.50		7.41			2.3			3.6			4.0		1	<1.6		
				Bottom	20.8	18.8	18.8	33.1	33.1	8.08	8.08	94.30	94.40	7.40	7.40	7.40	2.2	2.3		3.2	3.4		4.0	4.0		<1.6	1.6	
						18.8		33.1		8.08		94.40		7.40			2.3			3.3			4.0			<1.6		
8-Jan-19	Fine	Moderate	9:21			18.3		33.7		8.32		91.80		7.04			1.3			4.2			6.0			<1.6		
				Surface	1	18.3	18.3	33.8	33.7	8.32	8.32	91.60	91.67	7.03	7.03		1.5	1.4		4.3	4.0		6.0	6.0		<1.6	1.6	
						18.3		33.8		8.31		91.60		7.03		7.03	1.4			3.5			6.0			<1.6		
				Manager 1	44.4	18.3	40.0	33.8	20.7	8.32	0.00	91.70	04.00	7.03	7.00		1.7	4.7	4 70	3.2	2.2	2.20	6.0		0.00	<1.6	4.0	4.00
				Middle	11.1	18.3	18.3	33.7	33.7	8.33	8.32	91.70	91.60	7.03	7.02		1.7	1.7	1.72	3.5	3.3	3.32	6.0	6.0	6.00	<1.6	1.6	1.60
						18.3 18.3		33.8 33.8		8.32 8.35		91.40 91.60		7.01 7.02			1.8			3.3 2.8			6.0			<1.6 <1.6		
				Bottom	21.3	18.3	18.3	33.8	33.8	8.31	8.32	91.60	91.63	7.02	7.02	7.02	2.1 2.0	2.0		2.7	2.6		6.0	6.0		<1.6	1.6	
				Dolloiii	21.5	18.3	10.5	33.8	33.0	8.31	0.32	91.70	31.03	7.02	7.02	7.02	2.0	2.0		2.4	2.0		6.0	0.0		<1.6	1.0	
10-Jan-19	Sunny	Moderate	10:30			18.5		33.4		8.37		87.90		6.77	1		1.7			1.6			6.0			<1.6		
10 0411 13	Guilly	Woderate	10.50	Surface	1	18.5	18.5	33.4	33.4	8.36	8.36	89.30	88.47	6.86	6.81		1.6	1.6		1.3	1.6		6.0	6.3		<1.6	1.6	
						18.5		33.4		8.36		88.20		6.79			1.6			1.9			7.0			<1.6		
						18.5		33.4		8.36		88.20		6.79		6.79	2.1			1.2			7.0		i	<1.6		
				Middle	11.3	18.5	18.5	33.4	33.4	8.36	8.36	87.80	87.87	6.76	6.76		2.0	2.1	2.00	1.9	1.5	1.58	6.0	6.3	6.22	<1.6	1.6	1.60
						18.5		33.4		8.37		87.60		6.74			2.2			1.5			6.0			<1.6		
						18.5		33.4		8.39		88.30		6.80			2.3			1.9			6.0		1	<1.6		
				Bottom	21.5	18.5	18.5	33.4	33.4	8.35	8.37	88.50	88.33	6.81	6.80	6.80	2.3	2.3		1.2	1.6		6.0	6.0		<1.6	1.6	
						18.5		33.4		8.36		88.20		6.79			2.2			1.7			6.0			<1.6		
12-Jan-19	Sunny	Moderate	12:02			18.5		33.1		8.09		97.00		6.53			2.5			6.5			5.0			<1.6		
				Surface	1	18.5	18.5	33.1	33.1	8.09	8.09	97.90	98.70	6.60	6.65		2.5	2.5		6.4	6.2		5.0	5.0		<1.6	1.6	
						18.5		33.1		8.09		101.20		6.82		6.62	2.4			5.7			5.0			<1.6		
						18.5		33.1		8.09		97.00		6.53			2.8			5.8			5.0			<1.6		
				Middle	10.7	18.5	18.5	33.1	33.1	8.10	8.09	99.60	97.97	6.71	6.60		2.7	2.8	2.73	4.9	5.5	5.54	5.0	5.0	5.11	<1.6	1.6	1.60
						18.5		33.1		8.09		97.30		6.55			2.9			5.8			5.0			<1.6		
				D-#	20.4	18.5	40.5	33.1	20.4	8.10	0.00	99.40	07.00	6.68	0.50	0.50	2.9	0.0		5.2	4.0		5.0			<1.6	4.0	
				Bottom	20.4	18.5 18.5	18.5	33.1 33.1	33.1	8.08 8.09	8.09	97.20 96.80	97.80	6.55 6.52	6.58	6.58	3.0 2.9	2.9		4.7 4.9	4.9		6.0 5.0	5.3		<1.6 <1.6	1.6	
45 Jan 40	C	0-1	44.04							0.00				0.00						1.0							1	
15-Jan-19	Sunny	Calm	14:01	Surface	1	18.9	18.9	32.3	32.3	8.00	8.00	92.10	92.17	7.07	7.08		2.3	2.3		1.2	0.9		6.0	6.0		<1.6	1.6	
				Suriace	'	18.9 18.9	10.9	32.3 32.3	32.3	8.00 8.00	0.00	92.20 92.20	92.17	7.08 7.08	7.06		2.2	2.3		0.7 0.8	0.9		6.0 6.0	6.0		<1.6	1.0	
			l			18.9	-	32.3		8.00	1	92.20	1	7.08	1	7.07	2.3			1.2			6.0	1	ł	<1.6 <1.6	1	
			l	Middle	10.8	18.9	18.9	32.3	32.3	8.00	8.00	92.00	92.00	7.06	7.07		2.5	2.4	2.42	1.7	1.3	1.27	6.0	6.0	6.00	<1.6	1.6	1.60
			l			18.9		32.3	02.0	8.00	0.00	92.00	02.00	7.07			2.3			1.1			6.0	0.0	0.00	<1.6		
			l			18.9		32.3		8.00		92.00		7.07	1		2.5			1.9			6.0	1	1	<1.6	1	
			l	Bottom	20.6	18.9	18.9	32.3	32.3	8.00	8.00	91.90	91.97	7.06	7.06	7.06	2.6	2.6		1.4	1.6		6.0	6.0	l	<1.6	1.6	
			l			18.9		32.3		8.00	l	92.00	l	7.06			2.7			1.4			6.0	1	l	<1.6	1	
						. 5.5		UL.U		5.00		02.00											0.0			11.0		

Water Quality Monitoring Results at CS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ed Oxygen ((mg/L)	Ti	urbidity(NT	U)	Suspe	nded Solids	(mg/L)	С	opper (µm/	L)	To	tal PAH (µn	1/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
17-Jan-19	Sunny	Moderate	14:58	Surface	1	18.1 18.1 18.1	18.1	33.5 33.5 33.5	33.5	8.25 8.25 8.25	8.25	100.40 101.00 100.90	100.77	7.77 7.82 7.81	7.80	7.81	1.4 1.5 1.4	1.4		0.6 0.6 0.8	0.7		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Middle	11.5	18.0 18.0 18.1	18.0	33.5 33.5 33.5	33.5	8.25 8.25 8.25	8.25	100.70 101.10 101.30	101.03	7.79 7.82 7.84	7.82	7.01	1.3 1.5 1.4	1.4	1.42	0.9 0.7 <0.5	0.7	0.63	<1 <1 <1	1.0	1.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	22.1	18.0 18.1 18.1	18.1	33.5 33.5 33.5	33.5	8.25 8.25 8.26	8.25	99.50 99.40 98.90	99.27	7.70 7.69 7.65	7.68	7.68	1.4 1.5 1.4	1.4		<0.5 0.6 <0.5	0.5		<1 <1 1.0	1.0		<1.6 <1.6 <1.6	1.6	1
19-Jan-19	Fine	Moderate	15:05	Surface	1	18.0 18.1 18.1	18.0	33.6 33.6 33.6	33.6	8.22 8.20 8.18	8.20	90.40 91.10 88.30	89.93	6.73 6.79 6.58	6.70	6.55	2.7 2.7 2.8	2.7		1.9 2.8 2.2	2.3		5.0 6.0 6.0	5.7		<1.6 <1.6 <1.6	1.6	
				Middle	11.3	18.0 17.9 17.9	18.0	33.6 33.6 33.6	33.6	8.20 8.19 8.22	8.20	85.60 85.90 86.20	85.90	6.37 6.39 6.43	6.40	0.00	3.1 2.9 2.8	2.9	3.01	3.3 3.3 3.9	3.5	2.69	7.0 6.0 6.0	6.3	6.11	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	21.8	17.9 17.9 18.0	17.9	33.6 33.6 33.6	33.6	8.20 8.22 8.20	8.21	84.90 83.70 85.80	84.80	6.33 6.24 6.40	6.32	6.32	3.3 3.3 3.5	3.4		1.9 2.6 2.3	2.3		6.0 7.0 6.0	6.3		<1.6 <1.6 <1.6	1.6	
22-Jan-19	Fine	Moderate	8:24	Surface	1	17.9 17.9 17.9	17.9	32.6 32.6 32.6	32.6	8.21 8.20 8.21	8.21	93.50 93.40 93.30	93.40	6.78 6.78 6.77	6.78	6.77	1.5 1.7 1.7	1.6		2.9 3.5 2.7	3.0		4.0 5.0 5.0	4.7		<1.6 <1.6 <1.6	1.6	ı
				Middle	10.9	17.9 17.9 17.9	17.9	32.6 32.7 32.7	32.6	8.21 8.21 8.21	8.21	93.20 93.30 92.90	93.13	6.76 6.76 6.74	6.75		1.9 2.1 2.0	2.0	1.96	3.8 3.6 3.5	3.6	3.07	4.0 5.0 4.0	4.3	4.56	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	20.8	17.9 17.9 17.9	17.9	32.7 32.7 32.7	32.7	8.20 8.22 8.20	8.21	93.40 93.30 93.10	93.27	6.77 6.76 6.75	6.76	6.76	2.1 2.3 2.3	2.2		2.0 2.8 2.8	2.5		5.0 5.0 4.0	4.7		<1.6 <1.6 <1.6	1.6	
24-Jan-19	Sunny	Moderate	10:12	Surface	1	18.4 18.4 18.4	18.4	31.9 31.9 31.9	31.9	8.01 8.01 8.01	8.01	92.20 91.70 91.40	91.77	7.16 7.12 7.11	7.13	7.10	1.7 1.5 1.6	1.6		5.6 5.7 6.5	5.9		9.0 8.0 8.0	8.3		<1.6 <1.6 <1.6	1.6	Ī
				Middle	10.8	18.3 18.3 18.3	18.3	31.8 31.9 31.8	31.8	8.02 8.02 8.02	8.02	91.00 90.10 91.70	90.93	7.08 6.99 7.13	7.07		2.0 1.8 2.0	1.9	1.91	5.5 5.0 4.9	5.1	6.02	9.0 8.0 8.0	8.3	8.22	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	21.7	18.3 18.3 18.3	18.3	31.8 31.8 31.8	31.8	8.02 8.02 8.02	8.02	86.40 90.50 87.30	88.07	6.72 7.04 6.79	6.85	6.85	2.3 2.2 2.1	2.2		6.6 7.6 6.8	7.0		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	<u> </u>
26-Jan-19	Fine	Moderate	11:11	Surface	1	18.5 18.5 18.5	18.5	31.9 31.9 31.9	31.9	8.04 8.04 8.04	8.04	89.00 89.50 89.10	89.20	6.96 6.98 6.96	6.97	6.98	2.1 2.2 2.1	2.1		4.9 4.6 5.6	5.0		7.0 7.0 7.0	7.0		<1.6 <1.6 <1.6	1.6	ı
				Middle	11.2	18.5 18.5 18.5 18.5	18.5	32.0 32.0 32.0 32.1	32.0	8.07 8.07 8.07 8.08	8.07	89.70 89.30 89.60 89.30	89.53	6.99 6.98 6.99 6.97	6.99		2.6 2.8 2.6 3.3	2.7	2.72	5.9 5.9 5.1 2.6	5.6	4.59	7.0 7.0 7.0 6.0	7.0	6.89	<1.6 <1.6 <1.6 <1.6	1.6	1.60
29-Jan-19	Sunny	Moderate	12:21	Bottom	21.4	18.5 18.5 18.4	18.5	32.1 32.1 32.3	32.1	8.08 8.09 8.11	8.08	89.00 89.20 97.70	89.17	6.96 6.97 6.53	6.97	6.97	3.4 3.4 2.1	3.4		3.3 3.4 1.6	3.1		7.0 7.0 4.0	6.7		<1.6 <1.6 <1.6	1.6	
29-Jan-19	Suriny	Moderate	12.21	Surface	1	18.4 18.4 18.4	18.4	32.3 32.3 32.4	32.3	8.11 8.11 8.11	8.11	98.50 97.30 97.30	97.83	6.53 6.58 6.50 6.49	6.54	6.53	2.2 2.2 2.2	2.2		1.7 1.5 1.6	1.6		5.0 4.0 4.0	4.3		<1.6 <1.6 <1.6	1.6	ı
				Middle	10.5	18.4 18.4 18.4	18.4	32.4 32.4 32.5	32.4	8.11 8.11 8.11	8.11	98.00 97.60 96.50	97.63	6.54 6.52 6.44	6.52		2.2 2.2 2.2	2.2	2.18	1.4 1.5 2.1	1.5	1.61	4.0 4.0 5.0	4.0	4.44	<1.6 <1.6 <1.6	1.6	1.60
31-Jan-19	Sunny	Moderate	13:51	Bottom	20.1	18.4 18.4 18.6	18.4	32.5 32.5 31.9	32.5	8.12 8.12 8.02	8.12	96.10 96.20 92.50	96.27	6.41 6.42 7.00	6.42	6.42	2.1 2.2 2.0	2.2		1.2 1.9 2.2	1.7		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
O I Dall-19	Guilly	Moderate	10.01	Surface	1	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.01 8.03 8.01	8.02	92.90 92.90 95.10 90.90	93.50	7.05 7.21 6.89	7.09	6.99	2.0 2.0 2.0 2.2	2.0		1.8 1.4 1.9	1.8		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	i
				Middle	11.1	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.03 8.02 8.02	8.02	91.00 91.10 90.80	91.00	6.90 6.91 6.89	6.90		2.2 2.2 2.2 2.3	2.2	2.18	2.4 1.8 2.6	2.0	1.94	5.0 5.0 5.0	5.0	5.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	21.2	18.6 18.7	18.6	31.9 31.9	31.9	8.01 8.03	8.02	90.50 90.80	90.70	6.87 6.87	6.88	6.88	2.4 2.3	2.3		1.5 1.9	2.0		5.0 5.0	5.0		<1.6 <1.6	1.6	

Water Quality Monitoring Results at CS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	s (mg/L)	С	opper (µm/	/L)	То	tal PAH (µ	m/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jan-19	Cloudy	Moderate	22:50	Surface	1	17.7 17.6	17.6	33.8 33.7	33.7	8.23 8.21	8.21	83.40 80.00 78.90	80.77	6.02 5.77 5.69	5.83		3.1 3.2	3.2		1.7	1.7		5.0 5.0	5.0		<1.6 <1.6	1.6	
				Middle	5.6	17.6 17.6 17.6	17.6	33.8 33.8 33.8	33.8	8.20 8.25 8.23	8.23	81.60 79.60	80.00	5.89 5.74	5.77	5.80	3.2 3.2 3.3	3.2	3.21	1.8 1.6 1.9	1.7	1.61	5.0 5.0 5.0	5.0	4.78	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	10.2	17.7 17.7 17.6	17.6	33.8 33.8 33.8	33.8	8.21 8.27 8.23	8.24	78.80 81.00 79.40	79.67	5.68 5.85 5.73	5.75	5.75	3.2 3.2 3.2	3.2		1.5 1.6 1.2	1.4		5.0 4.0 4.0	4.3		<1.6 <1.6 <1.6	1.6	
						17.7		33.8		8.23		78.60		5.67			3.3			1.5			5.0			<1.6		
5-Jan-19	Sunny	Calm	0:06	Surface	1	18.8 18.8 18.8	18.8	33.1 33.1 33.1	33.1	8.05 8.05 8.05	8.05	93.50 93.40 93.80	93.57	7.14 7.13 7.16	7.14	7.13	2.0 1.9 2.1	2.0		4.0 3.8 4.6	4.1		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
				Middle	6.1	18.8 18.8 18.8	18.8	33.2 33.2 33.2	33.2	8.05 8.05 8.05	8.05	93.20 93.30 93.60	93.37	7.11 7.12 7.14	7.12	7.15	2.0 2.4 2.5	2.3	2.40	4.2 4.0 3.8	4.0	3.82	4.0 4.0 4.0	4.0	4.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	11.1	18.8 18.8	18.8	33.2 33.2 33.2	33.2	8.05 8.05 8.05	8.05	93.80 93.50 93.30	93.53	7.15 7.13 7.12	7.13	7.13	3.0 2.9 2.8	2.9		3.4 3.6 3.0	3.3		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
8-Jan-19	Fine	Moderate	1:40			18.8 18.3		33.2		8.29		90.70		6.95	1		1.9			5.1			5.0			<1.6	1	+
0 0411 10		Moderate	1.10	Surface	1	18.3 18.3	18.3	33.8 33.8	33.8	8.28 8.29	8.29	91.10 91.40	91.07	6.98 7.00	6.98	6.97	2.0 1.9	1.9		4.7 5.1	5.0		5.0 5.0	5.0		<1.6 <1.6	1.6	<u> </u>
				Middle	6.3	18.3 18.3 18.3	18.3	33.8 33.8 33.8	33.8	8.29 8.29 8.29	8.29	90.80 90.80 90.70	90.77	6.96 6.96 6.95	6.96	0.01	2.1 2.3 2.2	2.2	2.10	4.2 4.8 4.5	4.5	5.22	5.0 5.0 5.0	5.0	5.11	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	11.3	18.3 18.3 18.3	18.3	33.8 33.8 33.8	33.8	8.30 8.28 8.29	8.29	90.70 90.70 90.90	90.77	6.95 6.95 6.97	6.96	6.96	2.3 2.2 2.0	2.2		6.4 6.0 6.2	6.2		6.0 5.0 5.0	5.3		<1.6 <1.6 <1.6	1.6	
10-Jan-19	Fine	Moderate	3:39			18.5		33.3		8.34		87.30		6.72			2.1			1.2			6.0			<1.6		_
				Surface	1	18.6 18.6	18.6	33.2 33.1	33.2	8.33 8.32	8.33	87.40 88.20	87.63	6.72 6.78	6.74	6.73	2.0 2.1	2.1		1.6 1.6	1.5		7.0 6.0	6.3		<1.6 <1.6	1.6	
				Middle	6.3	18.5 18.5 18.5	18.5	33.4 33.4 33.4	33.4	8.34 8.34 8.35	8.34	87.10 87.80 87.10	87.33	6.71 6.75 6.70	6.72		2.2 2.2 2.1	2.2	2.14	1.7 1.9 1.9	1.8	1.72	6.0 6.0 6.0	6.0	6.11	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	11.4	18.5 18.5 18.5	18.5	33.4 33.4 33.4	33.4	8.35 8.33 8.35	8.34	87.60 87.00 86.80	87.13	6.74 6.69 6.68	6.70	6.70	2.3 2.2 2.1	2.2		1.4 2.1 2.1	1.9		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	
12-Jan-19	Cloudy	Moderate	2:52	Surface	1	18.2 18.2 18.2	18.2	32.8 32.8 32.8	32.8	8.22 8.22 8.23	8.22	99.00 98.60 98.90	98.83	6.64 6.61 6.63	6.63		2.2 2.4 2.3	2.3		4.7 4.0 4.3	4.3		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
				Middle	5.9	18.2 18.2 18.2	18.2	32.8 32.8 32.8 32.8	32.8	8.21 8.21 8.21	8.21	98.60 98.50 97.60	98.23	6.61 6.61 6.54	6.59	6.61	2.3 2.3 2.4	2.3	2.34	4.3 3.7 3.8	3.9	4.36	5.0 5.0 5.0	5.0	5.11	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	10.6	18.2 18.2 18.2	18.2	32.8 32.8	32.8	8.21 8.21	8.21	97.20 97.50	97.63	6.52 6.54	6.55	6.55	2.4 2.4	2.4		4.3 5.1 5.0	4.8		6.0 5.0 5.0	5.3		<1.6 <1.6 <1.6	1.6	
15-Jan-19	Sunny	Calm	5:12	Surface	1	18.9 18.8	18.8	32.8 32.1 32.2	32.2	7.98 7.98	7.98	98.20 92.90 92.80	92.90	7.14 7.13	7.14		2.4 2.2 2.2	2.2		1.0 1.7	1.4		6.0 6.0	6.0		<1.6 <1.6	1.6	
				Middle	6.0	18.8 18.8 18.8	18.8	32.2 32.3 32.3	32.3	7.98 7.98 7.98	7.98	93.00 92.70 92.70	92.77	7.14 7.12 7.12	7.12	7.13	2.2 2.2 2.3	2.2	2.22	0.8 1.1	1.0	1.22	6.0 6.0 6.0	6.0	6.22	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	11.0	18.8 18.8 18.8	18.8	32.3 32.3 32.3	32.3	7.98 7.98 7.98	7.98	92.90 92.90 92.70	92.77	7.13 7.13 7.11	7.12	7.12	2.2 2.3 2.2	2.2		1.2 1.3 1.0	1.2		6.0 6.0 7.0	6.7		<1.6 <1.6 <1.6	1.6	
						18.9		32.3		7.98		92.70		7.11			2.2			1.3			7.0			<1.6		<u> </u>

Water Quality Monitoring Results at CS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	s (mg/L)	С	opper (µm/	/L)	Tot	tal PAH (µr	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
17-Jan-19	Fine	Moderate	21:14	Surface	1	18.4 18.5 18.6	18.5	33.6 33.6 33.6	33.6	8.25 8.25 8.25	8.25	101.30 102.50 99.30	101.03	7.78 7.87 7.61	7.75		2.1 2.0 1.9	2.0		2.8 2.6 2.0	2.5		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
				Middle	5.8	18.4 18.3	18.4	33.6 33.6	33.6	8.25 8.26	8.25	88.60 88.40	88.83	6.81 6.80	6.82	7.29	2.1	2.2	2.17	2.8 2.5	2.9	2.49	7.0 8.0	7.7	7.89	<1.6 <1.6	1.6	1.60
				Bottom	10.5	18.5 18.4 18.5	18.4	33.5 33.5 33.5	33.5	8.25 8.25 8.25	8.25	89.50 89.00 88.80	88.70	6.86 6.83 6.83	6.82	6.82	2.2 2.3 2.3	2.3		3.4 2.0 2.1	2.1		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
19-Jan-19	Fine	Moderate	23:27	Surface	1	18.3 18.2 18.1	18.2	33.6 33.6 33.6	33.6	8.26 8.28 8.27	8.28	98.10 98.00	97.50	7.30 7.29	7.25		2.4 4.1 4.2	4.1		0.9 1.4	1.3		6.0 6.0	5.7		<1.6 <1.6 <1.6	1.6	
				Middle	5.4	18.2 18.1 18.1	18.1	33.6 33.6 33.6	33.6	8.28 8.28 8.27	8.27	96.40 91.40 91.00	91.60	7.16 6.78 6.76	6.80	7.03	4.0 4.4 4.1	4.3	4.56	1.5 1.8 1.9	1.6	1.33	5.0 5.0 6.0	5.3	5.33	<1.6 <1.6 <1.6	1.6	1.60
						18.1 18.1		33.6 33.6	33.6	8.27 8.27		92.40 91.30	91.90	6.87 6.78		6.83	4.3 5.2	5.3		1.1		1.00	5.0 5.0	5.0	0.00	<1.6 <1.6	1.6	1.00
22-Jan-19	Fine	Moderate	2:10	Bottom	9.9	18.0 18.1 17.8	18.1	33.6 33.6 32.6		8.27 8.28 8.19	8.27	93.30 91.10 92.00		6.94 6.77 6.67	6.83	0.03	5.4 5.3 2.4			1.2 1.2 3.0	1.1		5.0 5.0 4.0			<1.6 <1.6		
				Surface	1	17.8 17.8 17.8	17.8	32.6 32.6 32.7	32.6	8.18 8.18 8.19	8.18	92.40 92.10 92.00	92.17	6.70 6.68 6.67	6.68	6.69	2.2 2.4 3.0	2.3		3.6 3.3 2.4	3.3		5.0 4.0 4.0	4.3		<1.6 <1.6 <1.6	1.6	
				Middle	6.0	17.8 17.8 17.8	17.8	32.7 32.7 32.7	32.7	8.19 8.19 8.20	8.19	92.40 92.30 91.90	92.23	6.70 6.69 6.66	6.69		3.1 3.0 3.7	3.0	3.00	2.6 2.2 3.9	2.4	3.32	4.0 4.0 4.0	4.0	4.22	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	11.1	17.8 17.8	17.8	32.7 32.7	32.7	8.19 8.19	8.19	92.00 91.90	91.93	6.67 6.66	6.66	6.66	3.7 3.5	3.6		4.3 4.6	4.3		4.0 5.0	4.3		<1.6 <1.6	1.6	
24-Jan-19	Fine	Moderate	2:17	Surface	1	18.4 18.4 18.4	18.4	31.9 31.9 31.9	31.9	8.01 8.01 8.01	8.01	91.90 91.80 91.90	91.87	7.14 7.13 7.14	7.14	7.13	2.6 2.5 2.4	2.5		6.0 5.2 3.9	5.0		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
				Middle	5.3	18.3 18.3 18.3	18.3	31.9 31.9 31.9	31.9	8.02 8.02 8.02	8.02	91.60 91.50 91.50	91.53	7.12 7.12 7.12	7.12	7.10	2.4 2.3 2.4	2.4	2.49	6.0 7.8 7.9	7.2	6.43	8.0 8.0 8.0	8.0	8.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	9.6	18.3 18.3 18.3	18.3	31.9 31.9 31.9	31.9	8.02 8.02 8.01	8.02	91.40 91.60 91.50	91.50	7.11 7.12 7.11	7.11	7.11	2.5 2.7 2.6	2.6		7.5 7.3 6.3	7.0		8.0 8.0 8.0	8.0		<1.6 <1.6	1.6	
26-Jan-19	Fine	Moderate	4:07	Surface	1	18.5 18.5 18.5	18.5	32.0 32.0 32.0	32.0	8.03 8.02 8.04	8.03	90.30 89.90 90.50	90.23	7.03 7.02 7.05	7.03		2.2 2.1 2.3	2.2		4.8 5.6 5.1	5.2		7.0 7.0 7.0	7.0		<1.6 <1.6 <1.6	1.6	
				Middle	6.2	18.4 18.4 18.4	18.4	32.1 32.0 32.1	32.0	8.07 8.06 8.06	8.06	90.70 91.40 90.70	90.93	7.06 7.11 7.06	7.08	7.06	3.1 2.8 2.6	2.8	2.77	4.7 5.0 4.6	4.8	5.44	7.0 7.0 7.0 7.0	7.0	6.67	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	11.4	18.4 18.4	18.4	32.1 32.1	32.1	8.07 8.07	8.08	90.50 90.10	90.33	7.06 7.03	7.05	7.05	3.3 3.1	3.3		6.3 6.1	6.4		6.0	6.0		<1.6 <1.6	1.6	
29-Jan-19	Cloudy	Moderate	21:09	Surface	1	18.4 18.4 18.4	18.4	32.1 32.6 32.6	32.6	8.09 8.16 8.16	8.16	90.40 100.30 97.00	97.77	7.05 6.71 6.49	6.54		2.5 2.5	2.5		6.8 2.6 3.3	3.2		6.0 4.0 5.0	4.3		<1.6 <1.6 <1.6	1.6	
				Middle	6.0	18.4 18.4 18.4	18.4	32.6 32.7 32.7	32.7	8.16 8.16 8.16	8.16	96.00 98.10 95.80	96.73	6.42 6.56 6.40	6.47	6.50	2.5 2.5 2.5	2.5	2.50	3.6 2.8 3.6	3.1	3.31	4.0 4.0 5.0	4.3	4.33	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	11.0	18.4 18.4 18.3	18.3	32.7 32.6 32.6	32.6	8.16 8.16 8.16	8.16	96.30 95.60 97.60	96.47	6.44 6.39 6.53	6.45	6.45	2.5 2.6 2.5	2.5		3.0 3.3 3.5	3.6		5.0 4.0	4.3		<1.6 <1.6 <1.6	1.6	
31-Jan-19	Fine	Moderate	22:33	Surface	1	18.3 18.6 18.6	18.6	32.6 31.9 31.9	31.9	8.16 8.03 8.03	8.03	96.20 90.80 90.70	90.77	6.43 6.88 6.87	6.88		2.4 1.8 1.9	1.8		4.1 2.6 3.4	3.0		4.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
				Middle	5.8	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.03 8.04 8.04	8.04	90.80 90.80 90.70	90.70	6.89 6.89 6.88	6.88	6.88	1.7 1.8 1.9	1.9	1.89	3.0 1.8 2.2	2.1	2.62	5.0 4.0 5.0	4.7	4.89	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	10.5	18.6 18.6		31.9 31.9		8.04 8.04		90.60 90.40	90.70	6.88 6.86		6.86	1.9 1.9	2.0	1.05	2.2 3.0	2.8	2.02	5.0 5.0	5.0	4.03	<1.6 <1.6		1.00
				BORROM	10.5	18.6 18.6	18.6	31.9 31.9	31.9	8.04 8.04	8.04	90.30 90.60	90.43	6.85 6.87	6.86	0.80	2.1 2.0	2.0		2.6 2.8	2.8		5.0 5.0	5.0		<1.6 <1.6	1.6	

Water Quality Monitoring Results at CS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	erature (°C) Salinity (ppt)		pH DO Saturation (%)			ration (%)	Dissolved Oxygen (mg/L)			Τι	urbidity(NT	U)	Susper	nded Solids	(mg/L)	Copper (µm/L)			To	Total PAH (µm/L)		
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
3-Jan-19	Cloudy	Moderate	5:21			17.8		33.7		8.18		82.60		5.95			2.9			1.9			4.0			<1.6		
				Surface	1	17.8	17.8	33.7	33.7	8.17	8.17	79.40	80.27	5.72	5.78		2.9	2.9		2.0	1.8		4.0	4.0		<1.6	1.6	
						17.8		33.7		8.17		78.80		5.67		5.76	3.0			1.6			4.0			<1.6		
						17.8		33.7		8.19		80.80		5.82			2.9			1.6			4.0			<1.6		
				Middle	5.7	17.8	17.8	33.7	33.7	8.18	8.18	79.20	79.57	5.70	5.73		3.0	3.0	2.97	1.5	1.7	1.64	5.0	4.7	4.33	<1.6	1.6	1.60
						17.8		33.7		8.18		78.70		5.67			3.0			1.9			5.0		ļ	<1.6		
				D #	40.4	17.8	47.0	33.7	00.7	8.18	0.40	79.00	70.07	5.69			3.0	0.0		1.7			4.0	4.0		<1.6	4.0	
				Bottom	10.4	17.8	17.8	33.7	33.7	8.20	8.18	80.20	79.27	5.78	5.71	5.71	3.0	3.0		1.4	1.4		4.0	4.3		<1.6	1.6	
- I 10			0.50			17.8		33.7		8.17		78.60		5.66			3.0			1.2			5.0			<1.6		
5-Jan-19	Sunny	Calm	6:52	Surface	4	18.8 18.9	18.8	33.0 33.0	33.0	8.08 8.08	8.08	93.70 93.50	93.57	7.35 7.33	7.34		1.9	2.0		2.8 3.4	3.1		4.0	4.0		<1.6	1.6	
				Surface	1		18.8	33.0	33.0	8.08	8.08		93.57		7.34		2.1	2.0		3.4	3.1		4.0	4.0		<1.6	1.0	
						18.8						93.50		7.34		7.33	2.0						4.0		l	<1.6		
				Middle	6.4	18.9 18.9	18.9	33.1 33.1	33.1	8.07 8.07	8.07	93.30	93.33	7.31	7.31		2.2	2.1	2.14	1.6 1.7	1.7	2.42	4.0	4.0	4.00	<1.6	1.6	1.60
				ivildale	0.4	18.9	10.9	33.1	33.1	8.07	0.07	93.40 93.30	93.33	7.31 7.31	7.31		2.1 2.1	2.1	2.14	1.7	1.7	2.42	4.0 4.0	4.0	4.00	<1.6 <1.6	1.0	1.00
						19.0		33.1		8.07		93.40		7.30			2.1			2.5			4.0		ł	<1.6		
				Bottom	11.6	18.9	18.9	33.1	33.1	8.07	8.07	93.40	93.37	7.30	7.30	7.30	2.1	2.3		2.3	2.4		4.0	4.0		<1.6	1.6	
				Dolloiii	11.0	18.9	10.5	33.1	33.1	8.07	0.07	93.40	33.31	7.30	7.50	7.30	2.5	2.5		2.3	2.4		4.0	4.0		<1.6	1.0	
8-Jan-19	Fine	Moderate	8:45			18.3		33.7		8.31		91.90		7.05			1.9			2.8			6.0			<1.6		
0-Jan-19	rille	Woderate	0.40	Surface	1	18.3	18.3	33.7	33.7	8.31	8.31	91.90	91.80	7.05	7.04		1.9	1.9		3.4	3.1		6.0	6.0		<1.6	1.6	
				Canacc		18.3	10.0	33.7	00.7	8.31	0.01	91.60	01.00	7.03			1.9	1.0		3.1	0		6.0	0.0		<1.6	1.0	
						18.3		33.7		8.31		91.70	1	7.03		7.04	1.9			2.7			6.0		ł	<1.6	1	
				Middle	6.0	18.3	18.3	33.8	33.7	8.32	8.31	91.60	91.73	7.02	7.03		1.9	1.9	1.87	2.2	2.5	2.83	5.0	5.7	5.67	<1.6	1.6	1.60
				madio	0.0	18.3	10.0	33.7	00.7	8.31	0.01	91.90	00	7.05	7.00		2.0	1.0	1.07	2.6	2.0	2.00	6.0	0.7	0.01	<1.6	1.0	1.00
						18.3		33.8		8.31		92.00		7.05			1.8			3.1			5.0		ł	<1.6	1	
				Bottom	11.1	18.3	18.3	33.8	33.7	8.33	8.32	91.70	91.97	7.03	7.05	7.05	1.8	1.8		3.0	2.9		6.0	5.3		<1.6	1.6	
				Dottom		18.3	10.0	33.7	00.7	8.31	0.02	92.20	01.01	7.07	7.00	7.00	1.7	1.0		2.6	2.0		5.0	0.0		<1.6	1.0	
10-Jan-19	Sunny	Moderate	9:55			18.5		33.4		8.36		89.90		6.91			2.0			2.0			6.0			<1.6		
10 0411 13	Outliny	Woderate	3.55	Surface	1	18.5	18.5	33.4	33.4	8.36	8.36	90.10	89.80	6.92	6.90		2.0	2.0		1.3	1.6		6.0	6.0		<1.6	1.6	
				Canacc		18.5	10.0	33.4	00.1	8.36	0.00	89.40	00.00	6.87	0.00		1.9	2.0		1.4			6.0	0.0		<1.6	1.0	
						18.5		33.4		8.36		89.50		6.88		6.89	2.2			1.4			6.0		ł	<1.6	1	
				Middle	6.1	18.5	18.4	33.4	33.4	8.37	8.36	89.00	89.43	6.84	6.87		2.0	2.1	2.07	1.1	1.3	1.49	7.0	6.7	6.33	<1.6	1.6	1.60
						18.4		33.4		8.36		89.80		6.90			2.1			1.3			7.0	•••		<1.6		
						18.5		33.4		8.36		89.40		6.87			2.3			1.5			6.0		i	<1.6		
				Bottom	11.2	18.5	18.5	33.4	33.4	8.36	8.37	90.00	89.60	6.91	6.88	6.88	2.0	2.1		2.2	1.6		6.0	6.3		<1.6	1.6	
						18.5		33.4		8.38		89.40		6.87			2.1			1.2			7.0			<1.6		
12-Jan-19	Sunny	Moderate	11:18			18.5		33.1		8.09		101.20		6.82			2.7			6.1			5.0			<1.6		
				Surface	1	18.5	18.5	33.1	33.1	8.09	8.09	97.90	98.67	6.60	6.65		2.7	2.7		5.8	5.8		5.0	5.0		<1.6	1.6	
						18.5		33.1		8.09		96.90		6.53		0.04	2.6			5.6			5.0			<1.6		
						18.5		33.1		8.09		99.00		6.67		6.61	2.8			4.6			5.0		i	<1.6		
				Middle	6.1	18.5	18.5	33.1	33.1	8.09	8.09	97.20	97.63	6.55	6.58		2.7	2.7	2.70	4.7	4.5	5.73	5.0	5.0	5.11	<1.6	1.6	1.60
						18.5		33.1		8.09		96.70		6.51			2.7			4.3			5.0			<1.6		
						18.5		33.1		8.09		98.50		6.64			2.8			7.2			5.0		1	<1.6		
				Bottom	11.3	18.5	18.5	33.1	33.1	8.09	8.09	96.50	97.37	6.50	6.56	6.56	2.7	2.7		6.8	6.8		6.0	5.3		<1.6	1.6	
						18.5		33.1		8.09		97.10		6.54			2.6			6.5			5.0			<1.6		
15-Jan-19	Sunny	Calm	13:15			18.9		32.3		8.00		92.20		7.08			2.3			1.0			6.0			<1.6		
	,			Surface	1	18.9	18.9	32.3	32.3	8.00	8.00	92.10	92.13	7.07	7.07		2.4	2.4		1.4	1.1		6.0	6.0		<1.6	1.6	
	1					18.9		32.3		8.00		92.10	l	7.07		7.07	2.4			0.8			6.0	l	l	<1.6	1	
	1					18.9		32.3		7.99		92.00		7.06		7.07	2.5			0.5			6.0		1	<1.6		
				Middle	6.2	18.9	18.9	32.3	32.3	7.99	7.99	91.90	91.97	7.06	7.06		2.4	2.4	2.44	0.8	0.8	1.07	6.0	6.0	6.00	<1.6	1.6	1.60
	1					18.9		32.3		7.99		92.00	<u> </u>	7.06			2.4			1.0			6.0	<u></u>]	<1.6		
	1					18.9		32.3		7.99		91.90		7.05			2.5			1.5			6.0		1	<1.6		
	1			Bottom	11.4	18.9	18.9	32.3	32.3	7.99	7.99	91.90	91.90	7.05	7.05	7.05	2.5	2.5		1.0	1.4		6.0	6.0	l	<1.6	1.6	
						18.9		32.3		7.99		91.90		7.05			2.6			1.6			6.0			<1.6		

Water Quality Monitoring Results at CS2 - Mid-Flood Tide

March Marc	Date	Weather	Sea	Sampling	Depth	(m)	Temperature (°C)			y (ppt)	р	pH DO Saturation (%)			Dissolved Oxygen (mg/L)			Turbidity(NTU)			Susper	ided Solids	(mg/L)	Copper (µm/L)			Total PAH (µm/		n/L)
Part		Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
Part	17-Jan-19	Sunny	Moderate	14:24			18.3		33.4		8.24		94.20		7.27			1.3			1.5			<1			<1.6		
Part		,			Surface	1		18.3		33.4		8.24		94.23		7.27			1.3			1.4			1.0			1.6	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																	7.00												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							18.2		33.5		8.25		91.90		7.09		7.20	1.4		1	1.5			<1			<1.6		
Part					Middle	5.6	18.2	18.2	33.5	33.5	8.25	8.25	91.10	92.37	7.03	7.13		1.5	1.5	1.40	1.1	1.3	1.49	<1	1.0	1.00	<1.6	1.6	1.60
19. 19.							18.2		33.5		8.24		94.10		7.26			1.5			1.4			<1			<1.6		
Property							18.2		33.5		8.25		82.50		6.37			1.4		1	2.0			<1			<1.6		
19-3er-19 Fre Modelline 19-3er-19 Fre Modelline 19-3er-19 19-3					Bottom	10.2	18.2	18.2	33.5	33.5	8.26	8.25	84.80	84.93	6.53	6.55	6.55	1.4	1.4		1.6	1.7		1.0	1.0		<1.6	1.6	
Proper							18.2		33.5		8.24		87.50		6.75			1.4			1.6			<1			<1.6		
Part	19-Jan-19	Fine	Moderate	15:49			17.9		33.5		8.28		90.10		6.74			1.3			2.0			7.0			<1.6		
Model Mode					Surface	1	17.9	17.9	33.5	33.5	8.27	8.28	89.50	90.10	6.70	6.75		1.2	1.3		2.5	2.3		7.0	6.7		<1.6	1.6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							17.9		33.5		8.28		90.70		6.80		6.60	1.3			2.3			6.0			<1.6		
Proper language Proper lan							17.9		33.6		8.28		88.10		6.59		0.00	1.5		1	2.6			6.0			<1.6		
Sum Proc P					Middle	5.5		17.9		33.6		8.28		88.63	6.76	6.63		1.5	1.5	1.47	2.4	2.5	2.70	6.0	5.7	6.11	<1.6	1.6	1.60
22-in-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-											8.28				6.54			1.4									<1.6		
Propagation															6.27			1.7			3.3						<1.6		
22-lan-19 Fine Moderate Fine Moderate Fine Moderate Fine Moderate Fine Moderate Fine Moderate Fine Fine Fine Moderate Fine Fine Fine Moderate Fine Fine Moderate Fine Fine Fine Fine Moderate Fine Fine Fine Moderate Fine Fi					Bottom	10.1		17.9		33.6		8.28		85.23		6.36	6.36		1.7			3.4			6.0			1.6	
Surface Part																								0.0					
Mode 1	22-Jan-19	Fine	Moderate	7:48														1.8			2.7								
Mode					Surface	1		17.9		32.6		8.20		93.43		6.78			1.9			3.1			4.7			1.6	
Moderate Part Moderate Part																	6.77												
Part																	•												
Part					Middle	5.9		17.9		32.6		8.20		93.23		6.76			2.0	2.06		4.5	3.87		4.7	4.56		1.6	1.60
24-Jan-19 Sunty Moderate Sunty Sunty Moderate Sunty Moderate Sunty Sunty Moderate Sunty Sunty Moderate Sunty Sunty Moderate Sunty Sunty Sunty Moderate Sunty Sunty Sunty Moderate Sunty Sunty Moderate Sunty Sunty Moderate Sunty Sunty Sunty Moderate Sunty																													
24-Jan-19 Surny Moderate 9-31 Surny Surne 9-31 Surne					D #	40.0		47.0		00.0		0.00		00.47		0.70	0.70					4.0			4.0			4.0	
24-Jan-19 Surny Moderate Surny Surny Moderate Surny Surny Surny Surny Moderate Surny Surny					Bottom	10.8		17.9		32.6		8.20		93.47		6.78	6.78		2.3			4.0			4.3			1.6	
Surface 1 18,4 31,9		_																						1.0					
Part	24-Jan-19	Sunny	Moderate	9:31				40.4		04.0		0.04		04.07		7.11												4.0	
Middle 65 18.3 31.9 31.9 8.02 8.02 9160 917 7.13 7.13 7.13 20 2.0 2.0 2.07 4.4 4.5 9.0 9.0 9.0 4.16 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6					Surrace	1		18.4		31.9		8.01		91.97		7.14			2.0			4.7			8.7			1.6	
Moderate																	7.13			l									
Process of the color of the c					Middle			10.2		21.0		0.00		01.67		7 10			2.0	2.07		4.2	A EC		0.0	0.00		1.6	1.60
Part					ivildale	5.5		10.3		31.9		6.02		91.07		7.13			2.0	2.07		4.2	4.30		9.0	9.00		1.6	1.00
Section Sect																													
Surface 1 10,26					Dottom	0.7		10.2		24.0		0.01		01.57		7 10	7 10		2.2			4.0			0.2			1.6	
26-Jan-19 Fine Moderate					DOLLOTTI	9.7		10.3		31.0		0.01		91.57		7.12	7.12		2.3			4.0			9.3			1.0	
Sum Sum Moderate Sum	26- Jan-10	Eino	Moderate	10:26				-			0.0.				–	†											11.0		
Sum Moderate 12.59 Sunny Moderate 12.59 Sufface 18.4 18.4 32.4 32.4 8.12 8.12 97.00 6.56 6.54 6.55	20-Jan-19	rine	Woderate	10.26	Surface	1		18.5		31 0		8.04		80 33		6 97			1.8			4.1			77			1.6	
Middle 6.3 18.5 18.5 32.0 32.0 8.06 8.07 83.60 89.50 6.99 6.99 6.99 2.7 2.7 2.7 2.7 4.3 4.4 4.1 7.0 7.0 7.0 7.33 4.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1					Odiracc	٠. ا		10.5		01.0		0.04		03.00		0.57			1.0			4.1			<i>'</i>			1.0	
Middle 63 18.5 18.5 32.0 32.0 8.07														1		 	6.98			ł				0.0				1	
Sunny Moderate 12:59 Sunny Moderate 12:59 Sunny Middle 6.1 18.4 18.4 32.3 32.4 32.4 32.4 8.12					Middle	6.3		18.5		32.0		8.07		89.63		6.99			2.7	2.77		4.4	4.14		7.0	7.33		1.6	1.60
Part						0.0																							
Bottom 11.6 18.5 18.5 32.1 8.0 8.09 8.09 89.30 89.31 6.97 6.97 6.97 3.9 3.8 8.1 3.0 8.09 89.30 89.31 6.97 6.97 8.90 3.9 8.90 89.30 89.31 6.97 6.97 8.90 3.7 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1																				i									
Sunny Moderate 12:59 Surface 1 18.4 18.4 32.3 3					Bottom	11.6		18.5		32.1		8.09		89.33		6.97	6.97		3.8			3.9			7.3			1.6	
Surface 1 18.4 18.4 32.3 32.3 8.13 8.13 98.40 98.23 6.59 6.58 6.58 6.58 6.58 6.58 6.58 6.58 6.58																					3.7								
Surface 1 18.4 18.4 32.3 32.3 8.13 8.13 98.40 98.23 6.59 6.58 6.58 6.58 6.58 6.58 6.58 6.58 6.58	29-Jan-19	Sunnv	Moderate	12:59			18.4		32.3		8.13		98.00		6.56			2.4			1.7			4.0			<1.6		
Sumy Moderate 14:35 Surface 1 18:6 18:6 18:6 31:9 31:9 8:04 8:					Surface	1		18.4		32.3		8.13		98.23		6.58	l		2.4	l		1.9			4.7			1.6	
Middle 18.4 18.4 32.4 32.4 32.4 8.12 97.00 97.63 6.56 6.54 2.5 2.4 2.5 2.4 2.9 2.7 2.30 4.0																	0.50												
Sunny Moderate 14.35 Sunny Moderate 14.35 Surface 1 18.6 18.6 31.9 31							18.4		32.4		8.12		97.00		6.49		0.00	2.5		1	2.6			4.0			<1.6		
Bottom 11.0 18.4 18.4 32.4 32.4 8.12 97.60 97.03 6.47 6.53 6.50 6.50 2.5 2.5 2.5 2.5 2.2 2.3 4.0 4.0 4.0 4.0 4.1.6 1.6 4.1.6 4					Middle	6.1	18.4	18.4	32.4	32.4	8.12	8.12	98.00	97.63	6.56	6.54		2.4	2.5	2.44	2.9	2.7	2.30	4.0	4.0	4.22	<1.6	1.6	1.60
Bottom 11.0 18.4 18.4 32.4 32.4 8.12 8.12 97.60 97.03 6.53 6.50 6.50 2.5 2.5 2.7 2.3 4.0 4.0 4.0 < 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6							18.4		32.4		8.12		97.90		6.56			2.5			2.6			4.0			<1.6		
31-Jan-19 Sunny Moderate 14:35 Surface 1 18.6 18.6 31.9 8.04 8.04 90.20 90.27 6.84 6.84 2.0 2.0 2.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5							18.4		32.4		8.12		96.60		6.47			2.5		1	2.2			4.0			<1.6		
31-Jan-19 Sunny Moderate 14:35 Surface 1 18.6 18.6 31.9 31.9 8.04 8.04 90.20 90.27 6.84 6.84 1.9 1.9 1.9 2.0 2.6 2.3 5.0 5.0 5.0 5.0 4.1.6 1.6 4.1.6 4					Bottom	11.0	18.4	18.4	32.4	32.4	8.12	8.12	97.60	97.03	6.53	6.50	6.50	2.5	2.5		2.7	2.3		4.0	4.0		<1.6	1.6	
Surface 1 18.6 18.6 31.9 31.9 8.04 8.04 90.20 90.27 6.84 6.84 6.84 1.9 1.9 1.9 2.6 2.3 5.0 5.0 5.0 4.1.6 4.1							18.4		32.4		8.12		96.90		6.49			2.4			2.1			4.0			<1.6		
18.6 31.9 8.04 90.20 6.84 6.83 1.9 2.4 5.0 5.0 41.6 41.	31-Jan-19	Sunny	Moderate	14:35			18.6		31.9		8.04		90.40		6.85			2.0			2.0			5.0			<1.6		
Middle 5.7 18.6 18.6 31.9 31.9 8.04 8.04 89.90 89.93 6.83 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0					Surface	1	18.6	18.6	31.9	31.9	8.04	8.04	90.20	90.27	6.84	6.84	l	1.9	1.9	l	2.6	2.3		5.0	5.0		<1.6	1.6	
Middle 5.7 18.6 18.0 31.9 31.9 8.04 90.00 6.83 2.0 2.0 2.9 5.0						L	18.6		31.9		8.04	<u> </u>	90.20	<u> </u>	6.84		6.83	1.9	<u></u>]	2.4			5.0	<u> </u>		<1.6		
18.6 31.9 8.04 89.90 6.82 2.0 2.6 5.0 <1.6							18.6		31.9		8.04		90.00		6.83		0.00	2.0]	2.9			5.0			<1.6		
18.6 31.9 8.04 89.90 6.82 2.0 2.6 5.0 <1.6					Middle	5.7	18.6	18.6	31.9	31.9	8.04	8.04	89.90	89.93	6.82	6.82	l	1.9	2.0	2.03	2.3	2.6	2.26	5.0	5.0	5.00	<1.6	1.6	1.60
Bottom 10.5 18.6 18.6 31.9 31.9 8.04 8.04 90.00 89.87 6.82 6.81 6.81 2.3 2.2 2.0 1.8 5.0 5.0 <1.6 1.6							18.6		31.9		8.04		89.90		6.82			2.0]	2.6			5.0			<1.6		
							18.6		31.9		8.04		89.80		6.81			2.1		l	2.1			5.0			<1.6		
18.6 31.9 8.04 89.80 6.81 2.2 1.4 5.0 <1.6					Bottom	10.5		18.6		31.9		8.04		89.87		6.81	6.81		2.2	l		1.8			5.0			1.6	
							18.6		31.9		8.04		89.80		6.81			2.2			1.4			5.0			<1.6		

Water Quality Monitoring Results at CS3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	s (mg/L)	С	opper (μm/	L)	To	tal PAH (µ	m/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jan-19	Cloudy	Moderate	23:15	Surface	1	17.6 17.6 17.6	17.6	33.7 33.7 33.8	33.7	8.22 8.23 8.22	8.22	78.30 78.40 78.20	78.30	5.63 5.63 5.63	5.63		2.5 2.5 2.3	2.4		0.9 1.3 1.8	1.3		4.0 5.0 4.0	4.3		<1.6 <1.6 <1.6	1.6	
				Middle	3.7	17.6 17.6	17.6	33.8 33.8	33.8	8.22 8.24	8.23	78.20 78.20	78.20	5.63 5.62	5.62	5.63	2.4 2.5	2.4	2.46	1.7 1.9	1.7	1.52	4.0	4.0	4.11	<1.6 <1.6	1.6	1.60
				Bottom	6.2	17.6 17.6 17.6	17.6	33.8 33.8 33.8	33.8	8.22 8.23 8.25	8.23	78.20 78.10 77.80	77.93	5.62 5.61 5.59	5.60	5.60	2.4 2.5 2.5	2.5		1.5 1.7 1.6	1.5		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
						17.6		33.8		8.22		77.90		5.61			2.5			1.3			4.0			<1.6		
5-Jan-19	Sunny	Calm	0:29	Surface	1	18.8 18.8 18.8	18.8	33.2 33.2 33.2	33.2	8.05 8.05 8.05	8.05	92.80 92.80 92.50	92.70	7.08 7.08 7.06	7.07	7.06	2.2 2.2 2.1	2.2		2.9 2.9 3.3	3.0		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.7	18.8 18.9 18.8	18.8	33.2 33.2 33.2	33.2	8.05 8.05 8.05	8.05	92.60 92.30 92.40	92.43	7.06 7.03 7.05	7.05	7.00	2.2 2.1 2.3	2.2	2.30	2.3 2.2 2.0	2.2	2.90	4.0 4.0 4.0	4.0	4.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.3	18.9 18.9 18.9	18.9	33.2 33.2 33.2	33.2	8.05 8.05 8.05	8.05	92.30 92.10 92.50	92.30	7.04 7.02 7.05	7.04	7.04	2.6 2.5 2.5	2.5		3.6 3.7 3.2	3.5		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
8-Jan-19	Fine	Moderate	2:03			18.3		33.8		8.30		90.70		6.95	1		1.8	1		5.1			5.0			<1.6	1	1
0 0411 13	1 1110	Woderate	2.00	Surface	1	18.3 18.3	18.3	33.8 33.8	33.8	8.29 8.29	8.29	91.00 91.10	90.93	6.97 6.98	6.97	6.96	1.8 1.6	1.7		4.5 4.0	4.5		5.0 5.0	5.0		<1.6 <1.6	1.6	
				Middle	3.8	18.3 18.3 18.4	18.3	33.8 33.8 33.8	33.8	8.30 8.29 8.31	8.30	91.00 90.70 90.70	90.80	6.97 6.95 6.95	6.96	0.00	1.8 2.0 2.0	1.9	1.92	3.3 3.5 3.7	3.5	4.04	5.0 5.0 5.0	5.0	5.11	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.5	18.3 18.4 18.3	18.3	33.8 33.8 33.8	33.8	8.31 8.32 8.29	8.31	90.80 90.60 90.80	90.73	6.96 6.94 6.96	6.95	6.95	2.1 2.2 2.0	2.1		3.7 4.4 4.2	4.1		5.0 5.0 6.0	5.3		<1.6 <1.6 <1.6	1.6	
10-Jan-19	Fine	Moderate	4:02			18.5		33.4		8.35		87.70		6.74			1.9			1.4			6.0			<1.6		
				Surface	1	18.5 18.5	18.5	33.3 33.3	33.3	8.34 8.34	8.34	87.70 88.20	87.87	6.75 6.78	6.76	6.76	1.9 2.1	2.0		1.2	1.5		6.0 7.0	6.3		<1.6 <1.6	1.6	
				Middle	3.9	18.5 18.5 18.5	18.5	33.4 33.4 33.4	33.4	8.35 8.36 8.36	8.36	87.70 88.20 87.50	87.80	6.75 6.78 6.73	6.75	0.70	2.2 2.1 2.3	2.2	2.19	1.9 1.9 1.8	1.9	1.56	7.0 6.0 6.0	6.3	6.33	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.7	18.5 18.5 18.5	18.5	33.4 33.4 33.4	33.4	8.37 8.34 8.37	8.36	87.10 87.10 87.30	87.17	6.71 6.71 6.72	6.71	6.71	2.4 2.2 2.6	2.4		1.1 1.5 1.3	1.3		6.0 6.0 7.0	6.3		<1.6 <1.6 <1.6	1.6	
12-Jan-19	Cloudy	Moderate	3:21	Surface	1	18.3 18.3	18.3	32.8 32.8	32.8	8.21 8.21	8.21	99.20 99.60	99.57	6.64 6.67	6.66		2.3 2.2	2.2		5.6 5.5	5.4		5.0 6.0	5.7		<1.6 <1.6	1.6	
				Middle	3.9	18.4 18.3 18.3	18.3	32.8 32.8 32.8	32.8	8.21 8.21 8.20	8.20	99.90 98.60 99.10	99.07	6.68 6.59 6.63	6.63	6.65	2.2 2.3 2.3	2.3	2.28	5.1 4.6 5.6	5.2	4.80	6.0 6.0 5.0	5.3	5.67	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.5	18.3 18.3 18.3	18.3	32.8 32.8 32.8	32.8	8.20 8.20 8.20	8.20	99.50 98.40 98.50	98.50	6.66 6.58 6.59	6.59	6.59	2.3 2.3 2.3	2.3		5.5 3.6 3.5	3.8		5.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	
45 1 75	_	0.1	5.00			18.3		32.8		8.20		98.60		6.59	<u> </u>		2.3	<u> </u>		4.2			6.0			<1.6	<u> </u>	<u> </u>
15-Jan-19	Sunny	Calm	5:32	Surface	1	18.9 18.9 18.9	18.9	32.2 32.1 32.2	32.2	7.98 7.98 7.98	7.98	92.70 92.70 92.40	92.60	7.12 7.12 7.10	7.11	7.11	2.2 2.2 2.2	2.2		1.6 1.8 1.9	1.8		6.0 7.0 6.0	6.3		<1.6 <1.6 <1.6	1.6	
				Middle	3.6	18.9 18.9 18.9	18.9	32.2 32.3 32.2	32.2	7.98 7.98 7.98	7.98	92.50 92.30 92.40	92.40	7.10 7.09 7.10	7.10	7.11	2.3 2.3 2.3	2.3	2.30	1.3 1.3 1.3	1.3	1.37	9.0 8.0 9.0	8.7	7.11	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.2	18.9 18.9 18.9	18.9	32.3 32.3 32.3	32.3	7.98 7.98 7.98	7.98	92.10 92.20 92.50	92.27	7.07 7.08 7.09	7.08	7.08	2.5 2.4 2.3	2.4		1.2 0.9 1.0	1.0		6.0 6.0 7.0	6.3		<1.6 <1.6 <1.6	1.6	1

Water Quality Monitoring Results at CS3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	ided Solids	s (mg/L)	С	opper (µm/	/L)	To	tal PAH (μι	m/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
17-Jan-19	Fine	Moderate	20:56	Surface	1	18.5 18.5 18.5	18.5	33.6 33.5 33.6	33.6	8.25 8.26 8.25	8.25	89.00 88.90 89.10	89.00	6.83 6.82 6.83	6.83	0.00	2.1 2.2 2.0	2.1		1.4 1.2 1.9	1.5		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
				Middle	4.1	18.4 18.4 18.4	18.4	33.6 33.6 33.6	33.6	8.25 8.26 8.26	8.26	88.70 88.80 88.50	88.67	6.82 6.83 6.80	6.82	6.82	2.3 2.3 2.4	2.3	2.39	2.0 1.3 1.5	1.6	1.40	8.0 8.0 8.0	8.0	8.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	7.2	18.3 18.3 18.3	18.3	33.5 33.6 33.6	33.6	8.26 8.26 8.25	8.26	88.40 88.40 88.10	88.30	6.80 6.81 6.79	6.80	6.80	2.7 2.9 2.6	2.7		0.9 0.9 1.5	1.1		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
19-Jan-19	Fine	Moderate	23:06	Surface	1	18.1 18.1 18.2	18.1	33.6 33.6 33.6	33.6	8.26 8.27 8.26	8.26	91.40 91.80 92.00	91.73	6.79 6.81 6.83	6.81	6.81	3.0 3.0 3.0	3.0		1.5 2.0 1.4	1.6		5.0 6.0 5.0	5.3		<1.6 <1.6 <1.6	1.6	
				Middle	3.9	18.1 18.1 18.1	18.1	33.6 33.6 33.7	33.6	8.26 8.27 8.25	8.26	91.10 91.50 92.30	91.63	6.77 6.80 6.85	6.81	0.01	3.6 3.4 3.6	3.5	3.39	1.8 2.0 1.3	1.7	1.61	6.0 6.0 6.0	6.0	5.78	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	7.0	18.1 18.0 18.0	18.1	33.6 33.6 33.6	33.6	8.27 8.26 8.25	8.26	91.30 93.50 91.50	92.10	6.78 6.94 6.80	6.84	6.84	3.7 3.8 3.4	3.6		1.2 1.3 2.0	1.5		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	
22-Jan-19	Fine	Moderate	2:32	Surface	1	17.9 17.8 17.8	17.8	32.6 32.6 32.6	32.6	8.19 8.18 8.19	8.19	91.60 91.90 92.00	91.83	6.64 6.66 6.67	6.66	6.67	2.3 2.2 2.1	2.2		4.1 3.4 4.6	4.0		4.0 4.0 5.0	4.3		<1.6 <1.6 <1.6	1.6	
				Middle	3.8	17.8 17.8 17.8	17.8	32.7 32.7 32.7	32.7	8.19 8.20 8.19	8.19	92.30 92.20 91.90	92.13	6.69 6.68 6.66	6.68		2.6 2.7 2.8	2.7	2.59	4.2 4.2 4.6	4.3	3.96	5.0 5.0 4.0	4.7	4.33	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.6	17.8 17.8 17.8	17.8	32.7 32.7 32.7	32.7	8.20 8.21 8.19	8.20	92.00 92.00 91.90	91.97	6.67 6.67 6.66	6.67	6.67	2.8 3.0 2.8	2.9		3.4 3.4 3.7	3.5		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
24-Jan-19	Fine	Moderate	2:36	Surface	1	18.4 18.4 18.4	18.4	31.9 31.9 31.9	31.9	8.01 8.01 8.01	8.01	92.10 91.80 91.90	91.93	7.15 7.13 7.13	7.14	7.13	2.3 2.2 2.2	2.2		6.0 4.3 6.5	5.6		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
				Middle	4.0	18.4 18.3 18.3	18.3	31.9 31.9 31.9	31.9	8.02 8.02 8.02	8.02	91.70 91.70 91.60	91.67	7.13 7.13 7.12	7.13	7.10	2.5 2.6 2.3	2.5	2.64	6.4 5.2 6.6	6.1	5.52	8.0 8.0 8.0	8.0	8.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	7.1	18.3 18.3 18.4	18.3	31.8 31.9 31.8	31.8	8.02 8.02 8.01	8.02	91.40 91.50 91.60	91.50	7.11 7.12 7.12	7.12	7.12	3.4 3.1 3.2	3.2		5.7 5.1 3.9	4.9		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
26-Jan-19	Fine	Moderate	4:32	Surface	1	18.5 18.5 18.5	18.5	32.0 32.0 32.0	32.0	8.05 8.04 8.04	8.04	90.50 90.30 90.70	90.50	7.05 7.03 7.06	7.05	7.06	2.3 2.1 2.3	2.2		6.2 5.3 6.7	6.1		6.0 6.0 7.0	6.3		<1.6 <1.6 <1.6	1.6	
				Middle	3.7	18.5 18.4 18.5	18.4	32.0 32.1 32.0	32.0	8.07 8.07 8.06	8.07	91.00 90.70 90.50	90.73	7.09 7.06 7.05	7.07		2.7 2.4 2.5	2.5	2.43	3.9 4.7 4.7	4.4	5.47	7.0 7.0 7.0	7.0	6.78	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.4	18.4 18.4 18.4	18.4	32.1 32.1 32.1	32.1	8.08 8.07 8.07	8.07	90.50 90.30 90.40	90.40	7.06 7.04 7.05	7.05	7.05	2.6 2.5 2.5	2.5		5.8 6.1 5.8	5.9		7.0 7.0 7.0	7.0		<1.6 <1.6 <1.6	1.6	
29-Jan-19	Cloudy	Moderate	20:47	Surface	1	18.4 18.4 18.4	18.4	32.6 32.6 32.6	32.6	8.15 8.15 8.15	8.15	96.60 96.80 96.60	96.67	6.44 6.45 6.44	6.44	6.44	2.3 2.3 2.2	2.3		3.2 2.6 3.0	2.9		4.0 5.0 4.0	4.3		<1.6 <1.6 <1.6	1.6	
				Middle	3.8	18.4 18.4 18.4	18.4	32.7 32.7 32.7	32.7	8.16 8.15 8.15	8.15	96.80 96.50 96.50	96.60	6.44 6.43 6.43	6.43		2.3 2.3 2.2	2.3	2.28	2.7 3.1 2.4	2.7	3.33	4.0 5.0 5.0	4.7	4.67	<1.6 <1.6 <1.6	1.6	1.60
24 1 (2	Fi	Madass	20.05	Bottom	6.5	18.4 18.4 18.4	18.4	32.7 32.7 32.7	32.7	8.15 8.16 8.15	8.15	96.40 96.70 96.50	96.53	6.42 6.44 6.43	6.43	6.43	2.3 2.3 2.3	2.3		4.7 4.1 4.2	4.3		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
31-Jan-19	Fine	Moderate	22:05	Surface	1	18.7 18.6 18.6	18.6	31.9 31.9 31.9 31.9	31.9	8.03 8.03 8.04 8.04	8.03	90.70 90.90 90.80 90.70	90.80	6.87 6.89 6.88	6.88	6.88	2.6 2.5 2.7 2.6	2.6		2.1 2.4 2.6 2.3	2.4		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6 <1.6	1.6	
				Middle	3.9	18.6 18.6	18.6	31.9 31.9	31.9	8.04 8.04	8.04	90.60 90.80	90.70	6.87 6.89	6.88		2.6 2.6	2.6	2.66	2.2 1.8	2.1	2.26	5.0 5.0 5.0	5.0	5.00	<1.6 <1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.7	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.04 8.04 8.04	8.04	90.50 90.40 90.40	90.43	6.86 6.85 6.86	6.86	6.86	2.7 2.9 2.7	2.8		2.1 2.5 2.3	2.3		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	

Water Quality Monitoring Results at CS3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ture (°C)	Salinit	y (ppt)	F	Н	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Tu	urbidity(NT	U)	Susper	nded Solids	(mg/L)	С	opper (μm	/L)	To	tal PAH (µr	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
3-Jan-19	Cloudy	Moderate	4:53			17.8		33.7		8.18		77.70		5.56			2.7			1.6			5.0			<1.6		
				Surface	1	17.8	17.8	33.7	33.7	8.20	8.19	77.80	77.90	5.57	5.57		2.8	2.8		1.4	1.6		5.0	4.7		<1.6	1.6	
						17.8		33.7		8.18		78.20		5.59		5.56	2.9			1.8			4.0		ł	<1.6		
				Middle	3.8	17.8 17.8	17.8	33.7 33.7	33.7	8.19 8.21	8.19	77.60 77.40	77.50	5.55 5.54	5.54		2.9 2.9	2.9	2.87	1.8	1.6	1.64	5.0 4.0	4.7	4.56	<1.6 <1.6	1.6	1.60
				ivildule	3.6	17.8	17.0	33.7	33.1	8.18	0.19	77.50	11.30	5.54	3.34		2.9	2.9	2.01	1.4 1.7	1.0	1.04	5.0	4.7	4.36	<1.6	1.0	1.00
						17.8		33.7		8.20		77.50		5.54			3.0			1.9			5.0		ł	<1.6		
				Bottom	6.5	17.8	17.8	33.7	33.7	8.22	8.20	77.10	77.37	5.51	5.53	5.53	3.0	2.9		1.8	1.7		4.0	4.3		<1.6	1.6	
						17.8		33.7		8.18		77.50		5.54			2.8			1.4			4.0			<1.6		
5-Jan-19	Sunny	Calm	6:32			18.9		33.0		8.08		93.50		7.33			2.2			3.2			4.0			<1.6		
	-			Surface	1	18.9	18.9	33.1	33.0	8.07	8.08	93.50	93.50	7.33	7.33		2.0	2.1		3.4	3.2		4.0	4.0		<1.6	1.6	
						18.8		32.9		8.08		93.50		7.34		7.32	2.1			3.1			4.0		1	<1.6		
						18.9		33.1		8.07		93.20		7.30		7.02	2.3			2.5			4.0			<1.6		
				Middle	4.0	18.9	18.9	33.1	33.1	8.07	8.07	93.30	93.27	7.30	7.30		2.3	2.3	2.27	2.7	2.8	3.00	4.0	4.0	4.11	<1.6	1.6	1.60
						18.9		33.1		8.07		93.30		7.30			2.2			3.1			4.0			<1.6		
				Bottom	6.8	18.9 19.0	18.9	33.2 33.2	33.2	8.07 8.07	8.07	93.10 93.20	93.17	7.29 7.29	7.29	7.29	2.4 2.4	2.4		2.9 3.3	3.0		5.0 4.0	4.3		<1.6 <1.6	1.6	
				DOLLOTT	0.0	19.0	10.5	33.2	33.2	8.07	0.07	93.20	33.17	7.29	1.23	1.25	2.4	2.4		2.8	3.0		4.0	4.5		<1.6	1.0	
8-Jan-19	Fine	Moderate	8:18			18.3		33.7		8.31		92.20		7.07			1.9			3.2			6.0			<1.6		
o dan ro	1 1110	moderate	0.10	Surface	1	18.3	18.3	33.7	33.7	8.32	8.31	92.10	92.13	7.07	7.07		2.0	2.0		3.6	3.6		6.0	5.7		<1.6	1.6	
						18.3		33.7		8.31		92.10		7.06		7.07	2.0			3.9			5.0			<1.6		
						18.3		33.7		8.32		92.10		7.07		7.07	2.0			3.5			5.0		1	<1.6		
				Middle	3.9	18.3	18.3	33.7	33.7	8.32	8.32	92.10	92.07	7.06	7.06		2.0	2.0	1.98	3.1	3.2	3.21	5.0	5.3	5.67	<1.6	1.6	1.60
						18.3		33.7		8.31		92.00		7.06			1.9			2.9			6.0			<1.6		
				_		18.3		33.7		8.33		91.90		7.05			1.9			2.8			6.0			<1.6		
				Bottom	6.6	18.3	18.3	33.7	33.7	8.33	8.32	91.90	91.87	7.05	7.05	7.05	2.0	2.0		2.9	2.9		6.0	6.0		<1.6	1.6	
40 1 40	_		0.00			18.3		33.7		8.31		91.80		7.05			2.1			3.0			6.0			<1.6		
10-Jan-19	Sunny	Moderate	9:30	Surface	4	18.5 18.5	18.5	33.4 33.4	33.4	8.36 8.37	8.36	90.10 89.90	89.97	6.92 6.91	6.91		1.8 1.9	1.9		1.3 1.4	1.4		6.0 7.0	6.3		<1.6 <1.6	1.6	
				Surface	'	18.5	10.5	33.4	33.4	8.36	0.30	89.90	05.51	6.90	0.51		1.9	1.5		1.4	1.4		6.0	0.5		<1.6	1.0	
						18.5		33.4		8.37		89.70		6.90		6.90	2.4			1.6			6.0		ł	<1.6		
				Middle	3.8	18.5	18.5	33.4	33.4	8.36	8.37	89.60	89.67	6.89	6.89		2.2	2.3	2.12	1.1	1.5	1.41	6.0	6.3	6.11	<1.6	1.6	1.60
						18.5		33.4		8.38		89.70		6.89			2.2			1.8			7.0			<1.6		
						18.5		33.4		8.37		89.70		6.90			2.3			1.2			6.0		1	<1.6		
				Bottom	6.5	18.5	18.5	33.4	33.4	8.36	8.37	89.70	89.67	6.90	6.90	6.90	2.2	2.2		1.3	1.4		6.0	5.7		<1.6	1.6	
						18.5		33.4		8.39		89.60		6.89			2.2			1.6			5.0			<1.6		
12-Jan-19	Sunny	Moderate	10:51			18.5		33.1		8.08		98.20		6.58			2.3			6.8			5.0			<1.6		
				Surface	1	18.6	18.6	33.1	33.1	8.08	8.08	97.20	98.97	6.51	6.63		2.2	2.3		6.3	6.7		5.0	5.0		<1.6	1.6	
						18.6		33.1		8.08		101.50 99.90		6.81		6.61	2.3			6.9			5.0		ł	<1.6		
				Middle	3.7	18.5 18.5	18.5	33.1 33.1	33.1	8.09 8.08	8.08	99.90	98.27	6.70 6.55	6.59		2.6 2.6	2.6	2.47	8.1 8.3	8.2	7.82	5.0 5.0	5.3	5.11	<1.6 <1.6	1.6	1.60
				Wilduic	0.7	18.5	10.0	33.1	55.1	8.08	0.00	97.10	30.27	6.51	0.00		2.6	2.0	2.47	8.2	0.2	7.02	6.0	0.0	0.11	<1.6	1.0	1.00
						18.5		33.1		8.08		96.90		6.50			2.5			8.1			5.0			<1.6		
				Bottom	6.4	18.5	18.5	33.1	33.1	8.09	8.08	99.10	97.87	6.64	6.56	6.56	2.6	2.5		8.8	8.6		5.0	5.0		<1.6	1.6	
						18.5		33.1		8.08		97.60		6.54			2.5			8.9			5.0			<1.6		
15-Jan-19	Sunny	Calm	12:56			18.9		32.3		8.00		92.30		7.08			2.3			1.5			6.0			<1.6		
	-			Surface	1	18.9	18.9	32.3	32.3	8.00	8.00	92.50	92.50	7.10	7.10		2.3	2.3		1.6	1.7		6.0	6.0		<1.6	1.6	
						18.9		32.3		8.00		92.70		7.12	1	7.10	2.2			1.9			6.0		1	<1.6		
						18.9	40.0	32.3	00.0	8.00	0.00	92.60	00.05	7.11	7.00		2.2		0.00	1.3		4.00	6.0		0.00	<1.6	4.0	4.00
				Middle	3.9	18.9	18.9	32.3	32.3	8.00	8.00	92.10	92.33	7.07	7.09		2.3	2.3	2.32	1.0	1.1	1.28	6.0	6.0	6.00	<1.6	1.6	1.60
						18.9		32.3		8.00		92.30		7.09	 		2.4			1.1			6.0	-	l	<1.6	 	
				Bottom	6.6	18.9 18.9	18.9	32.3 32.3	32.3	8.00 8.00	8.00	92.90 92.50	92.50	7.13 7.10	7.10	7.10	2.3 2.4	2.4		1.3 1.0	1.0		6.0 6.0	6.0	l	<1.6 <1.6	1.6	
				DOLLOITI	0.0	18.9	10.5	32.3	32.3	8.00	0.00	92.50	32.30	7.10	7.10	7.10	2.4	2.4		0.8	1.0		6.0	0.0	l	<1.6	1.0	
						10.9		32.3		0.00		92.10		1.01	<u> </u>		2.0			0.0	1		0.0			51.0	1	

Water Quality Monitoring Results at CS3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Ti	urbidity(NT	U)	Susper	ided Solids	s (mg/L)	С	opper (µm	/L)	To	tal PAH (µn	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
17-Jan-19	Sunny	Moderate	14:08			18.2		33.4		8.24		93.70		7.25			1.4			1.6			<1			<1.6		
	,			Surface	1	18.1	18.2	33.5	33.4	8.24	8.24	97.20	95.23	7.52	7.36		1.4	1.5		1.3	1.3		<1	1.0		<1.6	1.6	
						18.2		33.5		8.24		94.80		7.32		7.24	1.6			1.1			<1			<1.6		
						18.1		33.5		8.24		89.90		6.95		1.24	1.5		1	2.4		1	<1			<1.6		
				Middle	4.1	18.1	18.1	33.5	33.5	8.24	8.24	95.30	91.93	7.37	7.12		1.6	1.6	1.56	2.0	2.4	2.01	<1	1.0	1.00	<1.6	1.6	1.60
						18.1		33.5		8.24		90.60		7.03			1.6			2.8			<1			<1.6		
				_		18.1		33.5		8.24		87.70		6.77			1.6			2.2			<1			<1.6		
				Bottom	7.0	18.1	18.1	33.5	33.5	8.25	8.24	84.50	86.27	6.54	6.67	6.67	1.7	1.6		2.3	2.3		1.0	1.0		<1.6	1.6	
						18.1		33.5		8.24		86.60		6.71			1.6			2.4			1.0			<1.6		
19-Jan-19	Fine	Moderate	16:13			17.9		33.5		8.24		88.60		6.63			1.1			2.4			6.0			<1.6		
				Surface	1	17.9	17.9	33.5	33.5	8.25	8.25	89.20	89.20	6.67	6.67		1.1	1.1		2.1	2.3		6.0	5.7		<1.6	1.6	
						18.0		33.5		8.26		89.80		6.71		6.64	1.2			2.3			5.0			<1.6		
				Middle	4.0	18.0	40.0	33.6	22.0	8.25	0.00	89.20	88.37	6.66	6.60		1.4	4.4	1.46	2.0	0.0	2.37	6.0		5.33	<1.6	4.0	1.60
				Middle	4.2	18.0	18.0	33.6	33.6	8.27	8.26	87.90	88.37	6.57	6.60		1.4	1.4	1.46	2.3	2.2	2.31	5.0	5.3	5.33	<1.6	1.6	1.60
						18.0		33.6		8.26		88.00		6.57			1.4		l	2.2		l	5.0			<1.6		
				Bottom	7.3	18.0 18.0	18.0	33.6 33.6	33.6	8.27 8.25	8.26	82.40 85.30	83.97	6.15 6.37	6.27	6.27	1.9	1.8		2.5 2.3	2.7		5.0 5.0	5.0		<1.6	1.6	
				DOLLOTTI	1.3	18.0	10.0	33.6	33.0	8.25 8.27	0.20	85.30	03.97	6.28	6.27	0.27	1.8 1.8	1.0		3.2	2.1		5.0	5.0		<1.6 <1.6	1.0	
22-Jan-19	Fine	Moderate	7:19			17.9		32.6		8.21		93.40		6.78	-			_					4.0					
22-Jan-19	rine	Woderate	7.19	Surface	1	17.9	17.9	32.6	32.6	8.20	8.20	93.40	93.60	6.80	6.79		1.9 1.7	1.8		7.2 7.8	7.3		5.0	4.3		<1.6 <1.6	1.6	
				Odiracc		17.9	17.5	32.6	02.0	8.20	0.20	93.60	33.00	6.79	0.75		1.7	1.0		6.8	7.5		4.0	4.5		<1.6	1.0	
						17.9		32.6		8.21		93.60		6.79		6.79	2.1		ł	4.5		ł	4.0			<1.6		
				Middle	3.9	17.9	17.9	32.6	32.6	8.21	8.21	93.40	93.53	6.77	6.78		2.0	2.0	1.98	5.0	5.1	5.42	4.0	4.0	4.11	<1.6	1.6	1.60
						17.9		32.6		8.20		93.60		6.79			2.0			5.7	•		4.0			<1.6		
						17.9		32.6		8.21		93.30		6.77			2.0		1	3.4		1	4.0			<1.6		
				Bottom	6.7	17.9	17.9	32.6	32.6	8.20	8.21	93.50	93.47	6.79	6.78	6.78	2.2	2.1		4.3	3.9		4.0	4.0		<1.6	1.6	
						17.9		32.6		8.21		93.60		6.79			2.1			4.1			4.0			<1.6		
24-Jan-19	Sunny	Moderate	9:07			18.4		31.9		8.01		92.00		7.14			2.3			4.5			8.0			<1.6		
	,			Surface	1	18.4	18.4	31.9	31.9	8.01	8.01	91.90	91.93	7.13	7.13		2.2	2.3		3.8	4.5		8.0	8.3		<1.6	1.6	
						18.4		31.9		8.01		91.90		7.13		7.40	2.3			5.2			9.0			<1.6		
						18.4		31.9		8.01		91.80		7.13		7.13	2.3		1	5.4		1	8.0			<1.6		
				Middle	3.9	18.3	18.4	31.9	31.9	8.01	8.01	91.80	91.73	7.13	7.13		2.5	2.4	2.42	4.2	4.6	4.61	8.0	8.0	8.11	<1.6	1.6	1.60
						18.4		31.9		8.01		91.60		7.12			2.4			4.3			8.0			<1.6		
						18.3		31.8		8.01		91.50		7.11			2.7		1	4.5		1	8.0			<1.6		
				Bottom	6.9	18.3	18.3	31.8	31.8	8.01	8.01	91.40	91.43	7.11	7.11	7.11	2.5	2.6		4.8	4.7		8.0	8.0		<1.6	1.6	
						18.3		31.9		8.02		91.40		7.10			2.6			4.8			8.0			<1.6		
26-Jan-19	Fine	Moderate	9:56			18.6		31.9		8.03		89.20		6.97			2.1			3.8			7.0			<1.6		
				Surface	1	18.6	18.6	31.9	31.9	8.03	8.03	89.00	88.97	6.94	6.95		2.3	2.2		4.2	4.2		7.0	7.3		<1.6	1.6	
						18.6		31.9		8.04		88.70		6.93		6.95	2.3			4.6			8.0			<1.6		
						18.5	40.5	32.0	00.0	8.05	0.05	89.30	00.40	6.98	0.00		2.7	0.7	0.54	5.2		F 40	8.0	7.0		<1.6	4.0	4.00
				Middle	3.8	18.5	18.5	32.0	32.0	8.05	8.05	89.10	89.13	6.96	6.96		2.8	2.7	2.54	5.0	5.1	5.13	7.0	7.3	7.44	<1.6	1.6	1.60
						18.5		32.0		8.05		89.00		6.94			2.6		ł	5.2		ł	7.0			<1.6		
				Bottom	6.6	18.5	18.5	32.0	32.0	8.06	8.06	89.20	89.03	6.97	6.95	6.95	2.6	2.7		5.9	6.1		7.0	7.7		<1.6	1.6	
				DOLLOTTI	0.0	18.5 18.5	10.5	32.0 32.0	32.0	8.07 8.05	0.00	88.90 89.00	09.03	6.93 6.94	6.95	0.93	2.8 2.7	2.1		6.3 6.0	0.1		8.0 8.0	1.1		<1.6 <1.6	1.6	
29-Jan-19	Cuppy	Moderate	13:31											0.0	-		2.4	_					0.0					
29-Jan-19	Sunny	wouerate	13.31	Surface	1	18.5 18.5	18.5	32.4 32.4	32.4	8.15 8.15	8.15	98.80 99.60	99.20	6.60 6.65	6.62		2.4	2.4	l	1.4 1.9	1.7	l	5.0 5.0	4.7		<1.6 <1.6	1.6	
				Juliace	'	18.5	10.0	32.4	52.4	8.15	0.10	99.60	33.20	6.62	0.02		2.4	2.7	l	1.9	1.7	l	4.0	7.7		<1.6	1.0	
						18.5		32.4		8.14		98.30		6.56		6.61	2.5		ł	1.5		ł	4.0			<1.6		
				Middle	3.8	18.5	18.5	32.4	32.4	8.15	8.14	98.90	98.73	6.60	6.59		2.5	2.5	2.44	1.5	1.6	2.72	5.0	4.3	4.56	<1.6	1.6	1.60
				madio	0.0	18.5	10.0	32.4	02.1	8.14	0.11	99.00	00.70	6.61	0.00		2.4	2.0		1.8			4.0		1.00	<1.6	1.0	1.00
						18.5		32.4		8.14		98.80		6.60			2.5		i	4.4		i	5.0			<1.6		
				Bottom	6.5	18.5	18.5	32.4	32.4	8.14	8.14	97.90	98.27	6.54	6.56	6.56	2.5	2.5		5.1	4.9		5.0	4.7		<1.6	1.6	
						18.5		32.4		8.14		98.10		6.55			2.5			5.1			4.0			<1.6		
31-Jan-19	Sunny	Moderate	15:01			18.6		31.9		8.04		90.40		6.85			1.6			3.2			5.0			<1.6		
	•			Surface	1	18.6	18.6	31.9	31.9	8.04	8.04	90.30	90.30	6.84	6.84		1.7	1.6	l	2.5	2.9	l	5.0	5.0		<1.6	1.6	
						18.6		31.9		8.04		90.20		6.84		6.84	1.6		l	3.0		l	5.0			<1.6		
						18.6		31.9		8.04		90.20		6.84		0.04	2.2		1	1.8		1	5.0			<1.6		
				Middle	3.9	18.6	18.6	31.9	31.9	8.04	8.04	90.20	90.13	6.84	6.84		2.1	2.1	2.07	1.8	1.6	2.08	5.0	5.0	5.00	<1.6	1.6	1.60
						18.6		31.9		8.04		90.00		6.83			2.1		j	1.3		j	5.0			<1.6		
						18.6		31.9		8.04		89.90		6.82			2.4		l	1.9		l	5.0			<1.6		
				Bottom	6.8	18.6	18.6	31.9	31.9	8.04	8.04	89.90	89.93	6.82	6.82	6.82	2.5	2.4	l	1.8	1.7	l	5.0	5.0		<1.6	1.6	
						18.6		31.9		8.04		90.00		6.82			2.4			1.4			5.0			<1.6		

Water Quality Monitoring Results at IS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)	С	opper (μm/	/L)	То	tal PAH (μι	m/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jan-19	Cloudy	Moderate	23:37	Surface	1	17.6 17.6	17.6	33.7 33.7	33.7	8.20 8.19	8.19	80.50 78.90	79.30	5.79 5.67	5.70		1.8 1.8	1.8		1.1 1.3	1.2		5.0 5.0	4.7		<1.6 <1.6	1.6	1
						17.6 17.6		33.7 33.7		8.19 8.21		78.50 79.90		5.64 5.75		5.69	1.9			2.4			5.0			<1.6 <1.6		!
				Middle	3.6	17.6 17.6	17.6	33.7 33.7	33.7	8.21 8.19	8.20	78.80 78.50	79.07	5.67 5.64	5.69		1.9 1.9	1.9	1.91	2.7	2.4	2.00	4.0	4.3	4.33	<1.6 <1.6	1.6	1.60
				Bottom	6.2	17.6 17.6 17.6	17.6	33.7 33.8 33.7	33.7	8.19 8.20 8.23	8.21	78.40 77.80 79.50	78.57	5.64 5.59 5.72	5.65	5.65	2.0 2.1 1.9	2.0		2.6 2.3 2.3	2.4		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	ļ
5-Jan-19	Sunny	Calm	0:52	Surface	1	18.9 18.8	18.8	33.2 33.1	33.1	8.05 8.05	8.05	93.30 93.10	93.20	7.11 7.10	7.11		2.1	2.2		3.6 3.3	3.3		4.0 4.0	4.0		<1.6 <1.6	1.6	
						18.8 18.9		33.1 33.2		8.05 8.05		93.20 93.10		7.11 7.10		7.10	2.2 2.7			3.1 4.0			4.0			<1.6 <1.6		
				Middle	3.7	18.9 18.9	18.9	33.2 33.2	33.2	8.05 8.05	8.05	93.00 93.10	93.07	7.09 7.10	7.10		2.5 2.8	2.7	2.59	3.9 3.4	3.8	3.22	4.0 4.0	4.0	4.00	<1.6 <1.6	1.6	1.60
				Bottom	6.3	18.9 18.9 18.9	18.9	33.2 33.2 33.2	33.2	8.05 8.05 8.05	8.05	93.10 92.90 93.10	93.03	7.10 7.08 7.09	7.09	7.09	3.0 2.8 3.0	2.9		2.7 2.8	2.6		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
8-Jan-19	Fine	Moderate	2:16			18.3		33.8		8.30		90.80		6.96			1.9			3.9			6.0			<1.6		
				Surface	1	18.3 18.3	18.3	33.8 33.8	33.8	8.30 8.30	8.30	90.70 90.90	90.80	6.95 6.96	6.96	6.94	2.0	2.0		3.4 3.1	3.5		6.0	6.0		<1.6 <1.6	1.6	ļ
				Middle	3.9	18.3 18.4 18.4	18.4	33.8 33.8 33.8	33.8	8.31 8.30 8.30	8.30	90.60 90.30 90.50	90.47	6.94 6.91 6.93	6.93	0.34	2.0 2.1 1.9	2.0	2.06	4.0 4.0 3.7	3.9	3.50	6.0 6.0 6.0	6.0	6.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.7	18.4 18.4	18.4	33.8 33.8	33.8	8.32 8.30	8.31	90.60 90.60	90.53	6.94 6.94	6.93	6.93	2.2	2.2		2.9 3.5	3.1		6.0	6.0		<1.6 <1.6	1.6	
						18.4		33.8		8.30		90.40		6.92			2.3			3.0			6.0			<1.6		
10-Jan-19	Fine	Moderate	4:17	Surface	1	18.5 18.5 18.5	18.5	33.3 33.3 33.3	33.3	8.34 8.34 8.34	8.34	87.50 87.80 87.20	87.50	6.73 6.75 6.71	6.73		2.1 2.3 2.2	2.2		2.0 1.7 1.4	1.7		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	ļ
				Middle	3.8	18.5 18.5	18.5	33.4 33.4	33.4	8.36 8.35	8.35	87.50 87.00	87.30	6.73 6.70	6.72	6.72	2.1 2.1	2.1	2.18	1.9	1.7	1.58	6.0 7.0	6.3	6.22	<1.6 <1.6	1.6	1.60
				Bottom	0.5	18.5 18.5	18.5	33.4 33.4	33.4	8.35 8.35	0.00	87.40 87.20	87.17	6.72	6.71	6.71	2.0	2.3		1.9	1.3		7.0	6.3		<1.6	1.6	-
12-Jan-19	Cloudy	Moderate	3:35	Bottom	6.5	18.5 18.5 18.4	18.5	33.4 33.4 32.7	33.4	8.37 8.35 8.21	8.36	87.30 87.00 100.00	87.17	6.72 6.69	0.71	0.71	2.2 2.4 2.8	2.3		1.3 1.3 3.9	1.3		6.0 6.0 5.0	6.3		<1.6 <1.6	1.0	<u> </u>
12-Jan-19	Cloudy	Woderate	3.33	Surface	1	18.4 18.4	18.4	32.7 32.7 32.7	32.7	8.21 8.21	8.21	99.20 99.60	99.60	6.64 6.66	6.66	6.65	2.8 2.7	2.8		3.4 3.6	3.6		5.0 5.0	5.0		<1.6 <1.6	1.6	
				Middle	3.8	18.4 18.4 18.4	18.4	32.7 32.7 32.7	32.7	8.20 8.20 8.20	8.20	99.30 99.40 98.70	99.13	6.64 6.65 6.60	6.63	0.00	2.9 2.9 2.9	2.9	2.87	4.7 4.2 4.7	4.5	4.42	6.0 6.0 5.0	5.7	<u>5.56</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.7	18.4 18.4	18.4	32.7 32.7	32.7	8.20 8.20	8.20	98.30 98.50	98.67	6.58 6.59	6.60	6.60	2.9 3.0	2.9		5.1 4.9	5.1		6.0	6.0		<1.6 <1.6	1.6	•
						18.4		32.7		8.20		99.20		6.64			2.9			5.3			6.0			<1.6		
15-Jan-19	Sunny	Calm	5:56	Surface	1	18.9 18.9 18.9	18.9	32.1 32.1 32.0	32.1	7.99 7.98 7.98	7.98	92.40 92.30 92.40	92.37	7.09 7.09 7.10	7.09		2.2 2.3 2.2	2.2		1.3 1.2 1.9	1.5		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.6	18.9 18.9	18.9	32.2 32.2	32.2	7.98 7.98	7.98	92.10 92.00	92.10	7.07 7.06	7.07	7.08	2.3 2.3	2.3	2.31	1.3	1.2	1.36	7.0 6.0	6.3	6.22	<1.6 <1.6	1.6	1.60
				D #	0.0	18.9	40.0	32.2 32.3	00.0	7.99 7.99	7.00	92.20 92.10	20.00	7.08	7.00	7.00	2.3	0.4		1.2			6.0			<1.6 <1.6	4.0	1
				Bottom	6.2	18.9 18.9	18.9	32.3 32.3	32.3	7.98 7.98	7.98	91.90 92.10	92.03	7.05 7.06	7.06	7.06	2.5 2.3	2.4		1.5 1.0	1.4		7.0 6.0	6.3		<1.6 <1.6	1.6	

Water Quality Monitoring Results at IS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ture (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	ided Solids	(mg/L)	С	opper (µm/	/L)	Tot	al PAH (µı	n/L)
	Condition	Condition**	Time		. ,	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*		Average			Average		Value	Average	DA*
17-Jan-19	Fine	Moderate	20:34	Surface	1	18.5 18.6 18.5	18.5	33.6 33.5 33.6	33.5	8.25 8.25 8.25	8.25	90.50 88.80 89.30	89.53	6.94 6.81 6.85	6.87	6.88	2.4 2.3 2.4	2.4		1.5 1.6 1.2	1.4		7.0 8.0 7.0	7.3		<1.6 <1.6 <1.6	1.6	
				Middle	3.8	18.4 18.4 18.4	18.4	33.6 33.6 33.6	33.6	8.25 8.26 8.25	8.25	88.90 91.10 89.20	89.73	6.83 7.00 6.85	6.89	0.00	2.5 2.6 2.6	2.6	2.54	1.1 1.8 1.5	1.5	1.28	7.0 8.0 7.0	7.3	<u>7.56</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.4	18.3 18.4 18.4	18.3	33.6 33.6 33.6	33.6	8.27 8.26 8.25	8.26	90.70 89.30 88.90	89.63	6.99 6.87 6.84	6.90	6.90	2.7 2.8 2.6	2.7		1.2 0.9 0.7	0.9		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
19-Jan-19	Fine	Moderate	22:48	Surface	1	18.2 18.1 18.2	18.2	33.6 33.6 33.6	33.6	8.22 8.23 8.22	8.22	91.60 92.90 94.30	92.93	6.80 6.89 7.04	6.91	6.84	2.7 2.8 2.9	2.8		1.4 1.5 1.8	1.6		5.0 6.0 5.0	5.3		<1.6 <1.6 <1.6	1.6	
				Middle	3.8	18.1 18.1 18.1	18.1	33.6 33.6 33.6	33.6	8.22 8.22 8.23	8.22	91.80 90.60 90.80	91.07	6.83 6.73 6.75	6.77	0.01	3.5 3.2 3.4	3.4	3.20	1.7 1.0 1.7	1.5	<u>1.64</u>	5.0 6.0 5.0	5.3	5.22	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.4	18.0 18.1 18.1	18.1	33.6 33.6 33.6	33.6	8.24 8.21 8.22	8.22	91.70 90.60 90.70	91.00	6.83 6.74 6.75	6.77	6.77	3.5 3.4 3.4	3.4		1.6 2.1 2.0	1.9		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
22-Jan-19	Fine	Moderate	2:47	Surface	1	17.9 17.9 17.9	17.9	32.5 32.5 32.5	32.5	8.19 8.19 8.19	8.19	91.50 91.10 91.10	91.23	6.64 6.61 6.61	6.62	6.63	2.1 2.2 2.4	2.2		3.8 3.3 4.3	3.8		5.0 5.0 4.0	4.7		<1.6 <1.6 <1.6	1.6	
				Middle	3.7	17.9 17.9 17.8	17.9	32.7 32.7 32.7	32.7	8.20 8.19 8.20	8.20	91.70 91.20 91.70	91.53	6.65 6.61 6.64	6.63		2.4 2.4 2.5	2.4	2.50	3.2 2.8 3.4	3.1	3.86	5.0 4.0 4.0	4.3	4.44	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.3	17.8 17.8 17.9	17.8	32.7 32.7 32.7	32.7	8.20 8.21 8.20	8.20	91.50 91.70 91.20	91.47	6.63 6.64 6.61	6.63	6.63	2.6 2.9 3.0	2.8		4.7 4.4 4.8	4.6		4.0 5.0 4.0	4.3		<1.6 <1.6 <1.6	1.6	
24-Jan-19	Fine	Moderate	2:56	Surface	1	18.4 18.4 18.4	18.4	31.9 31.9 31.9	31.9	8.01 8.01 8.01	8.01	91.90 91.70 91.70	91.77	7.13 7.12 7.12	7.12	7.12	2.2 2.4 2.6	2.4		7.6 8.9 8.0	8.2		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.7	18.3 18.3 18.3	18.3	31.9 31.9 31.9	31.9	8.01 8.02 8.01	8.01	91.60 91.60 91.70	91.63	7.12 7.12 7.13	7.12	2	2.4 2.8 2.5	2.6	2.66	8.3 6.4 7.1	7.3	6.79	8.0 8.0 8.0	8.0	<u>8.11</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.3	18.4 18.3 18.3	18.3	31.8 31.9 31.8	31.8	8.01 8.02 8.01	8.01	91.40 91.50 91.40	91.43	7.10 7.12 7.10	7.11	7.11	3.2 3.0 2.8	3.0		5.1 5.3 4.4	4.9		8.0 8.0 9.0	8.3		<1.6 <1.6 <1.6	1.6	
26-Jan-19	Fine	Moderate	4:49	Surface	1	18.5 18.5 18.5	18.5	32.0 32.0 32.0	32.0	8.04 8.05 8.04	8.04	91.30 90.80 90.90	91.00	7.10 7.06 7.08	7.08	7.07	2.7 2.7 2.6	2.7		5.7 5.9 6.8	6.1		7.0 7.0 7.0	7.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.6	18.4 18.4 18.4	18.4	32.0 32.0 32.0	32.0	8.08 8.07 8.07	8.07	90.20 90.90 90.50	90.53	7.03 7.08 7.05	7.05	-	2.9 2.9 2.7	2.8	2.82	4.8 5.2 4.6	4.9	5.34	6.0 6.0 6.0	6.0	<u>6.67</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.2	18.4 18.4 18.4	18.4	32.1 32.1 32.1	32.1	8.07 8.08 8.09	8.08	90.20 90.30 89.80	90.10	7.03 7.04 7.00	7.02	7.02	2.8 3.1 3.0	3.0		5.2 4.6 5.3	5.0		7.0 7.0 7.0	7.0		<1.6 <1.6 <1.6	1.6	
29-Jan-19	Cloudy	Moderate	20:26	Surface	1	18.4 18.4 18.4	18.4	32.6 32.6 32.6	32.6	8.14 8.14 8.15	8.14	96.30 97.30 100.60	98.07	6.40 6.47 6.70	6.52	6.50	2.4 2.4 2.4	2.4		3.2 2.5 3.7	3.1		4.0 5.0 5.0	4.7		<1.6 <1.6 <1.6	1.6	
				Middle	3.7	18.4 18.4 18.4	18.4	32.6 32.6 32.6	32.6	8.15 8.15 8.14	8.15	99.00 96.90 96.20	97.37	6.59 6.44 6.40	6.48		2.5 2.5 2.5	2.5	2.49	3.6 2.5 2.6	2.9	2.53	4.0 4.0 5.0	4.3	4.56	<1.6 <1.6 <1.6	1.6	1.60
04.1			04.40	Bottom	6.4	18.4 18.4 18.4	18.4	32.6 32.6 32.6	32.6	8.15 8.14 8.15	8.15	98.20 96.00 96.70	96.97	6.53 6.39 6.43	6.45	6.45	2.5 2.6 2.6	2.6		1.5 1.6 1.6	1.6		5.0 4.0 5.0	4.7		<1.6 <1.6 <1.6	1.6	
31-Jan-19	Fine	Moderate	21:49	Surface	1	18.7 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.03 8.03 8.03	8.03	90.60 90.60 90.40	90.53	6.87 6.86 6.85	6.86	6.86	2.4 2.4 2.5	2.4		1.8 2.0 2.1	2.0		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.8	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.04 8.04 8.04	8.04	90.30 90.50 90.40	90.40	6.86 6.86 6.86	6.86		2.7 2.6 2.5	2.6	2.54	2.8 2.3 2.2	2.4	2.17	5.0 5.0 5.0	5.0	5.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.5	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.04 8.04 8.04	8.04	90.20 90.10 90.20	90.17	6.84 6.83 6.84	6.84	6.84	2.6 2.6 2.6	2.6		2.3 2.0 2.0	2.1		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	

Water Quality Monitoring Results at IS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ture (°C)	Salinit	y (ppt)	p	Н	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Τι	urbidity(NT	U)	Susper	nded Solids	s (mg/L)	С	opper (µm	/L)	To	tal PAH (µr	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
3-Jan-19	Cloudy	Moderate	4:25			17.8		33.7		8.18		77.80		5.57			2.3			1.3			5.0			<1.6		
				Surface	1	17.8	17.8	33.7	33.7	8.18	8.18	78.00	77.83	5.58	5.57		2.3	2.3		1.9	1.6		4.0	4.3		<1.6	1.6	
						17.8		33.7		8.19		77.70		5.56		5.57	2.3			1.7		ł	4.0			<1.6		
				Middle	3.7	17.8 17.8	17.8	33.7 33.7	33.7	8.19 8.19	8.19	77.60 78.00	77.73	5.56 5.58	5.56		2.4 2.3	2.3	2.33	3.1 2.6	2.9	2.37	4.0 4.0	4.0	4 4 4	<1.6 <1.6	1.6	1.60
				ivildule	3.7	17.8	17.0	33.7	33.1	8.19	0.19	77.60	11.13	5.55	5.56		2.3	2.3	2.33	3.0	2.9	2.31	4.0	4.0	<u>4.11</u>	<1.6	1.0	1.00
						17.8		33.7		8.19		77.90		5.58			2.4			2.7		ł	4.0			<1.6		
				Bottom	6.4	17.8	17.8	33.7	33.7	8.19	8.20	77.40	77.53	5.54	5.55	5.55	2.4	2.4		2.5	2.6		4.0	4.0		<1.6	1.6	
					•	17.8		33.7		8.21	5.25	77.30		5.53	0.00		2.3			2.5			4.0			<1.6		
5-Jan-19	Sunny	Calm	6:09			18.9		33.1		8.07		92.70		7.26			2.0			2.6			4.0			<1.6		
	,			Surface	1	18.9	18.9	33.1	33.1	8.07	8.07	92.70	92.80	7.26	7.27		2.1	2.1		2.6	2.4		4.0	4.0		<1.6	1.6	
						18.9		33.1		8.07		93.00		7.28		7.25	2.1			2.1			4.0			<1.6		
						19.0		33.1		8.07		92.60		7.25		1.23	2.1			2.5		1	4.0			<1.6		
				Middle	4.0	19.0	19.0	33.2	33.2	8.06	8.07	92.50	92.50	7.24	7.24		2.1	2.1	2.16	2.5	2.4	2.52	4.0	4.0	4.00	<1.6	1.6	1.60
						19.0		33.2		8.07		92.40		7.23			2.2			2.3			4.0			<1.6		
				D-#		19.1	40.0	33.2	22.0	8.06	0.00	92.50	00.50	7.22	7.00	7.00	2.3	0.0		2.4	0.7		4.0	4.0		<1.6	4.0	
				Bottom	6.8	19.0 19.0	19.0	33.2 33.2	33.2	8.06 8.06	8.06	92.60 92.40	92.50	7.23 7.22	7.22	7.22	2.3	2.3		3.0	2.7		4.0 4.0	4.0		<1.6 <1.6	1.6	
8-Jan-19	Fine	Moderate	8:01			18.3		33.2		8.31		92.40		7.07			1.9			2.7			6.0			<1.6		
0-Jan-19	rille	Moderate	6.01	Surface	1	18.3	18.3	33.7	33.7	8.31	8.31	92.10	92.13	7.07	7.07		1.7	1.8		2.5	2.5		6.0	6.0		<1.6	1.6	
				Gunaco		18.3	10.0	33.7	00.7	8.32	0.01	92.10	02.10	7.07	7.07		1.9	1.0		2.7	2.0		6.0	0.0		<1.6		
						18.3		33.7		8.31		92.00		7.06		7.07	2.1			2.3		1	6.0			<1.6		
				Middle	3.9	18.3	18.3	33.7	33.7	8.33	8.32	92.00	92.10	7.06	7.07		2.2	2.2	2.08	2.5	2.5	2.46	6.0	6.0	6.00	<1.6	1.6	1.60
						18.3		33.7		8.31		92.30		7.08			2.2			2.7			6.0			<1.6		
						18.3		33.7		8.31		92.40		7.09			2.3			2.4		1	6.0			<1.6		
				Bottom	6.8	18.3	18.3	33.7	33.7	8.34	8.32	92.10	92.20	7.06	7.07	7.07	2.2	2.2		2.1	2.3		6.0	6.0		<1.6	1.6	
						18.3		33.7		8.32		92.10		7.06			2.2			2.5			6.0			<1.6		
10-Jan-19	Sunny	Moderate	9:12			18.5		33.4		8.36		90.00		6.92			2.1			1.3			6.0			<1.6		
				Surface	1	18.5	18.5	33.4 33.4	33.4	8.36	8.36	90.30	90.10	6.93	6.92		1.9	2.0		1.4	1.2		6.0	6.0		<1.6	1.6	
						18.5 18.4		33.4		8.37 8.36		90.00 90.40		6.92 6.94		6.92	2.1			1.0		ł	6.0			<1.6 <1.6		
				Middle	3.9	18.4	18.4	33.4	33.4	8.36	8.37	89.90	89.93	6.94	6.91		2.5	2.6	2.46	1.5	1.4	1.44	6.0	6.0	6.00	<1.6	1.6	1.60
				Wildule	3.3	18.5	10.4	33.4	33.4	8.38	0.57	89.50	09.93	6.88	0.51		2.0	2.0	2.40	1.2	1.4	1.44	6.0	0.0	0.00	<1.6	1.0	1.00
						18.5		33.4		8.39		89.50		6.88			2.7			1.4		ł	6.0			<1.6		
				Bottom	6.7	18.5	18.5	33.4	33.4	8.36	8.37	90.00	89.97	6.92	6.91	6.91	2.8	2.7		1.8	1.7		6.0	6.0		<1.6	1.6	
						18.5		33.4		8.37		90.40		6.94			2.7			1.9			6.0			<1.6		
12-Jan-19	Sunny	Moderate	10:25			18.5		33.0		8.09		97.40		6.53			2.1			7.6			5.0			<1.6		
	,			Surface	1	18.5	18.5	33.0	33.0	8.09	8.09	97.40	97.47	6.53	6.53		2.1	2.1		7.4	7.3		5.0	5.0		<1.6	1.6	
						18.5		33.0		8.10		97.60		6.54		6.53	2.1			7.0			5.0			<1.6		
						18.5		33.0		8.10		97.60		6.53		0.00	2.3			8.7			5.0			<1.6		
				Middle	3.8	18.4	18.4	33.0	33.0	8.10	8.10	97.30	97.40	6.52	6.52		2.2	2.2	2.18	8.7	8.5	7.92	5.0	5.0	<u>5.11</u>	<1.6	1.6	1.60
						18.4		33.1		8.09		97.30		6.52			2.1			8.2		l	5.0			<1.6		
				D-#	C 4	18.5	40.5	33.0	22.0	8.09	0.40	97.20	07.00	6.51	0.50	0.50	2.2	0.0		8.0	7.0		6.0			<1.6	4.0	
				Bottom	6.4	18.5 18.5	18.5	33.0 33.0	33.0	8.10 8.10	8.10	97.50 97.30	97.33	6.53 6.52	6.52	6.52	2.3	2.2		7.9 7.8	7.9		5.0 5.0	5.3		<1.6 <1.6	1.6	
15-Jan-19	Sunny	Calm	12:32			18.8		32.3		8.00		92.60		7.11			2.2			1.2			6.0			<1.6		
15-5411-19	Suriny	Callii	12.32	Surface	1	18.8	18.8	32.3	32.3	8.00	8.00	92.60	92.60	7.11	7.11		2.2	2.2		1.3	1.3		6.0	6.0		<1.6	1.6	
				Canado	.	18.8		32.3	02.0	8.00	5.00	92.60	02.00	7.11			2.3			1.3			6.0	3.0		<1.6		
						18.8		32.3		8.00		92.40		7.10	1	7.10	2.3			1.5		1	6.0		1	<1.6	1	1
				Middle	3.8	18.8	18.8	32.3	32.3	8.00	8.00	92.30	92.37	7.09	7.10		2.3	2.3	2.31	1.2	1.2	1.43	6.0	6.0	6.00	<1.6	1.6	1.60
						18.8		32.3		8.00		92.40	l	7.10			2.4			0.9		l	6.0			<1.6		
						18.8		32.3		8.00		92.30		7.09			2.4			1.5		1	6.0		1	<1.6		1
				Bottom	6.6	18.8	18.8	32.3	32.3	8.00	8.00	92.30	92.30	7.09	7.09	7.09	2.3	2.4		2.2	1.8	l	6.0	6.0		<1.6	1.6	
						18.8		32.3		8.00		92.30	<u> </u>	7.09	<u> </u>		2.4			1.8			6.0			<1.6		

Water Quality Monitoring Results at IS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depth ((m)	Tempera	ature (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ed Oxygen ((mg/L)	Ti	urbidity(NT	U)	Suspe	nded Solids	(mg/L)	С	opper (µm/	L)	To	tal PAH (µn	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
17-Jan-19	Sunny	Moderate	13:51	Surface	1	18.4 18.4 18.4	18.4	33.5 33.5 33.5	33.5	8.24 8.23 8.23	8.23	93.50 91.30 90.60	91.80	7.19 7.04 6.97	7.07	6.99	2.0 2.0 1.9	2.0		1.3 1.3 1.8	1.5		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.9	18.4 18.3 18.4	18.4	33.6 33.6 33.6	33.6	8.24 8.24 8.23	8.24	91.70 89.30 88.20	89.73	7.05 6.87 6.80	6.91	0.55	2.3 2.2 2.3	2.3	2.23	1.0 0.9 1.1	1.0	1.17	1.0 <1 <1	1.0	1.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.6	18.2 18.2 18.2	18.2	33.5 33.5 33.5	33.5	8.23 8.23 8.24	8.23	85.70 82.80 82.30	83.60	6.59 6.36 6.33	6.43	6.43	2.5 2.5 2.4	2.5		1.4 0.9 0.8	1.0		1.0 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
19-Jan-19	Fine	Moderate	16:33	Surface	1	17.9 17.9 17.9	17.9	33.5 33.5 33.5	33.5	8.26 8.25 8.26	8.26	90.90 90.50 90.40	90.60	6.80 6.78 6.76	6.78	6.76	1.4 1.4 1.5	1.4		3.3 3.5 3.5	3.4		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.8	17.9 17.9 18.0	17.9	33.6 33.6 33.5	33.5	8.26 8.27 8.26	8.26	90.20 89.80 90.20	90.07	6.74 6.71 6.75	6.73	0.70	1.8 1.8 2.0	1.9	1.82	3.0 3.4 3.3	3.2	3.68	5.0 5.0 5.0	5.0	<u>5.00</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.6	18.0 18.0 18.0	18.0	33.6 33.6 33.5	33.6	8.26 8.28 8.26	8.27	87.10 87.60 87.70	87.47	6.51 6.55 6.56	6.54	6.54	2.2 2.1 2.2	2.2		4.6 4.2 4.3	4.4		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
22-Jan-19	Fine	Moderate	7:05	Surface	1	17.9 17.9 17.9	17.9	32.6 32.6 32.6	32.6	8.20 8.21 8.20	8.20	93.60 93.80 93.80	93.73	6.80 6.81 6.81	6.81	6.81	1.7 1.8 1.7	1.7		2.1 2.0 2.3	2.1		5.0 5.0 4.0	4.7		<1.6 <1.6 <1.6	1.6	
				Middle	3.8	17.9 17.9 17.9	17.9	32.6 32.6 32.6	32.6	8.20 8.21 8.20	8.20	93.60 93.80 94.00	93.80	6.79 6.81 6.82	6.81		1.9 2.0 2.0	2.0	2.01	5.2 5.4 5.0	5.2	4.29	4.0 4.0 4.0	4.0	4.22	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.4	17.9 17.9 17.9	17.9	32.6 32.6 32.6	32.6	8.20 8.22 8.21	8.21	94.00 93.80 93.70	93.83	6.82 6.80 6.79	6.80	6.80	2.4 2.3 2.3	2.3		5.8 5.0 5.8	5.5		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
24-Jan-19	Sunny	Moderate	8:43	Surface	1	18.4 18.4 18.4	18.4	31.9 31.9 31.9	31.9	8.01 8.01 8.01	8.01	91.90 91.90 91.80	91.87	7.13 7.14 7.12	7.13	7.13	2.0 2.2 2.5	2.2		3.8 3.7 3.9	3.8		9.0 9.0 9.0	9.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.8	18.3 18.3 18.3	18.3	31.9 31.9 31.9	31.9	8.01 8.01 8.01	8.01	91.50 91.70 91.60	91.60	7.12 7.13 7.12	7.12		2.6 2.6 2.4	2.5	2.43	5.2 4.2 4.8	4.7	4.38	9.0 8.0 9.0	8.7	<u>8.56</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.6	18.3 18.3 18.3	18.3	31.8 31.9 31.9	31.8	8.02 8.01 8.01	8.01	91.50 91.40 91.50	91.47	7.12 7.11 7.11	7.11	7.11	2.5 2.5 2.6	2.5		5.8 4.0 4.0	4.6		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
26-Jan-19	Fine	Moderate	9:38	Surface	1	18.5 18.5 18.6	18.5	32.0 31.9 32.0	31.9	8.03 8.03 8.03	8.03	89.30 89.10 89.50	89.30	6.97 6.96 6.98	6.97	6.97	2.0 1.9 2.1	2.0		4.1 4.3 3.4	3.9		8.0 7.0 7.0	7.3		<1.6 <1.6 <1.6	1.6	
				Middle	3.7	18.6 18.5 18.5	18.5	32.0 32.0 32.0	32.0	8.05 8.04 8.04	8.04	89.70 89.60 89.10	89.47	6.99 6.98 6.96	6.98		2.3 2.3 2.4	2.3	2.29	6.7 6.0 6.7	6.5	5.72	8.0 8.0 8.0	8.0	<u>7.44</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.4	18.5 18.5 18.5	18.5	32.0 32.0 32.0	32.0	8.05 8.05 8.05	8.05	89.20 88.90 89.20	89.10	6.96 6.94 6.97	6.96	6.96	2.5 2.5 2.6	2.5		7.4 6.5 6.4	6.8		7.0 7.0 7.0	7.0		<1.6 <1.6 <1.6	1.6	
29-Jan-19	Sunny	Moderate	13:48	Surface	1	18.5 18.5 18.5	18.5	32.3 32.3 32.3	32.3	8.15 8.15 8.15	8.15	99.30 99.00 98.60	98.97	6.63 6.62 6.59	6.61	6.60	2.5 2.6 2.5	2.5		3.8 3.2 2.9	3.3		4.0 5.0 5.0	4.7		<1.6 <1.6 <1.6	1.6	İ
				Middle	3.9	18.5 18.5 18.5	18.5	32.3 32.3 32.3	32.3	8.14 8.14 8.14	8.14	98.50 98.00 98.90	98.47	6.58 6.54 6.61	6.58		2.6 2.6 2.6	2.6	2.59	2.0 1.5 1.7	1.7	2.82	4.0 5.0 5.0	4.7	4.67	<1.6 <1.6 <1.6	1.6	1.60
24 1 (2	Current	Madaga	45:00	Bottom	6.6	18.5 18.5 18.5	18.5	32.3 32.3 32.3	32.3	8.14 8.14 8.14	8.14	97.90 98.00 97.80	97.90	6.54 6.54 6.53	6.54	6.54	2.6 2.6 2.7	2.6		3.4 3.6 3.3	3.4		4.0 5.0 5.0	4.7		<1.6 <1.6 <1.6	1.6	
31-Jan-19	Sunny	Moderate	15:20	Surface	1	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.04 8.04 8.04	8.04	90.30 90.50 90.30	90.37	6.85 6.86 6.84	6.85	6.85	2.2 2.0 2.0	2.1		1.3 1.8 2.0	1.7		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.7	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.04 8.04 8.04	8.04	90.40 90.30 90.40	90.37	6.86 6.85 6.85	6.85		2.2 2.2 2.4	2.3	2.29	1.8 1.9 1.8	1.8	1.87	5.0 5.0 5.0 5.0	5.0	5.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.2	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.04 8.05 8.04	8.04	90.10 90.10 90.10	90.10	6.83 6.84 6.83	6.83	6.83	2.4 2.6 2.6	2.5		2.2 2.1 1.9	2.1		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	

Water Quality Monitoring Results at IS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	T	urbidity(NT	U)	Susper	nded Solids	s (mg/L)	С	opper (μm/	/L)	To	tal PAH (µr	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*		Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
3-Jan-19	Cloudy	Moderate	0:07			17.6		33.7		8.20		78.60		5.65			2.2			1.1			4.0			<1.6		
				Surface	1	17.6	17.6	33.7	33.7	8.21	8.21	79.00	79.77	5.68	5.74		2.2	2.3		1.7	1.6		5.0	4.3		<1.6	1.6	
						17.6		33.7		8.23		81.70		5.88		5.72	2.5		ł	1.9		ł	4.0			<1.6		
				Middle	3.9	17.6 17.6	17.6	33.8 33.7	33.7	8.22 8.24	8.22	78.90 80.70	79.37	5.68 5.81	5.71		2.4 2.4	2.4	2.36	1.1	1.6	1.67	5.0 5.0	5.0	4.56	<1.6 <1.6	1.6	1.60
				ivildule	3.9	17.6	17.0	33.7	33.1	8.24	0.22	78.50	19.31	5.64	3.71		2.4	2.4	2.30	1.9 1.7	1.0	1.67	5.0	5.0	4.30	<1.6	1.0	1.60
						17.6		33.8		8.22		78.90		5.68			2.4		ł	1.8		ł	4.0			<1.6		
				Bottom	6.6	17.6	17.6	33.8	33.8	8.26	8.23	80.40	79.23	5.78	5.70	5.70	2.4	2.4		2.0	1.9		5.0	4.3		<1.6	1.6	
						17.6		33.8		8.21		78.40		5.64			2.3			1.8			4.0			<1.6		
5-Jan-19	Sunny	Calm	1:15			18.8		33.1		8.05		93.00		7.09			1.5			3.2			4.0			<1.6		
	-			Surface	1	18.8	18.8	33.1	33.1	8.06	8.05	92.80	92.93	7.08	7.09		1.7	1.6		2.9	2.9		4.0	4.0		<1.6	1.6	
						18.8		33.1		8.05		93.00		7.09		7.08	1.7		1	2.7		1	4.0			<1.6		
						18.9		33.2		8.05		92.90		7.08		1.00	1.9			3.3			4.0			<1.6		
				Middle	3.8	18.9	18.9	33.2	33.2	8.05	8.05	92.60	92.77	7.05	7.07		1.8	1.9	2.01	3.1	3.3	3.26	4.0	4.0	4.00	<1.6	1.6	1.60
						18.9		33.2		8.05		92.80		7.07			1.9			3.4			4.0			<1.6		
				Bottom	6.3	18.9 18.9	18.9	33.2 33.2	33.2	8.05 8.05	8.05	93.10 92.80	92.83	7.08 7.07	7.07	7.07	2.4 2.6	2.5		3.9 3.4	3.6		4.0 4.0	4.0		<1.6 <1.6	1.6	
				DOMOITI	0.5	18.9	10.5	33.2	33.2	8.05	0.00	92.60	32.03	7.05	7.07	7.07	2.6	2.5		3.4	3.0		4.0	4.0		<1.6	1.0	
8-Jan-19	Fine	Moderate	2:40			18.3		33.8		8.31		90.40		6.93			1.9			2.1			6.0			<1.6		
0 0411 10	0	Moderate	2.10	Surface	1	18.3	18.3	33.8	33.8	8.30	8.30	90.50	90.40	6.93	6.93		1.9	2.0		2.2	2.4		6.0	6.0		<1.6	1.6	
						18.4		33.8		8.30		90.30		6.92		6.92	2.1			3.0			6.0			<1.6		
						18.4		33.8		8.30		90.30		6.91		6.92	2.2		1	4.2		1	6.0			<1.6		
				Middle	3.9	18.4	18.4	33.8	33.8	8.31	8.30	90.50	90.40	6.93	6.92		2.1	2.1	2.02	4.4	4.4	3.53	6.0	6.0	6.00	<1.6	1.6	1.60
						18.4		33.8		8.30		90.40		6.92			1.9		1	4.6		1	6.0			<1.6		
						18.4		33.8		8.30		90.40		6.92			1.9			3.9			6.0			<1.6		
				Bottom	6.7	18.4	18.4	33.8	33.8	8.30	8.31	90.40	90.30	6.92	6.91	6.91	2.1	2.0		3.6	3.8		6.0	6.0		<1.6	1.6	
40 1 40	.					18.4		33.8		8.33		90.10		6.90			2.1			3.8			6.0			<1.6		
10-Jan-19	Fine	Moderate	4:41	Surface	1	18.5 18.5	18.5	33.4 33.4	33.4	8.34 8.35	8.34	87.10 87.10	87.07	6.70 6.71	6.70		2.3 2.2	2.3		1.8 1.7	1.7		6.0 6.0	6.0		<1.6 <1.6	1.6	
				Juliace	' '	18.6	10.5	33.4	33.4	8.34	0.34	87.00	07.07	6.69	0.70		2.2	2.0		1.7	1.7		6.0	0.0		<1.6	1.0	
						18.5		33.4		8.34		87.00		6.69		6.70	2.3		ł	1.4		ł	6.0			<1.6		
				Middle	4.1	18.5	18.5	33.4	33.4	8.36	8.35	87.10	87.07	6.70	6.70		2.3	2.3	2.29	1.3	1.5	1.63	7.0	6.3	6.11	<1.6	1.6	1.60
						18.5		33.4		8.35		87.10		6.70			2.2			1.8			6.0			<1.6		
						18.5		33.4		8.35		86.90		6.69			2.3		1	1.9		1	6.0			<1.6		
				Bottom	7.2	18.5	18.5	33.4	33.4	8.35	8.36	86.90	86.83	6.69	6.68	6.68	2.3	2.3		1.6	1.7		6.0	6.0		<1.6	1.6	
						18.5		33.4		8.38		86.70		6.67			2.4			1.7			6.0			<1.6		
12-Jan-19	Cloudy	Moderate	3:59			18.4		32.7		8.21		98.60		6.59			2.4			4.4			5.0			<1.6		
				Surface	1	18.4	18.4	32.7	32.7	8.20	8.21	98.70	98.63	6.60	6.60		2.5	2.5		4.4	4.5		6.0	5.3		<1.6	1.6	
						18.4		32.7		8.21		98.60		6.60		6.58	2.5		ł	4.7		ł	5.0			<1.6		
				Middle	3.8	18.4 18.4	18.4	32.7 32.7	32.7	8.20 8.20	8.20	98.00 98.00	98.07	6.55 6.56	6.56		2.5 2.5	2.5	2.51	4.4 4.8	4.8	5.03	5.0 5.0	5.3	5.22	<1.6 <1.6	1.6	1.60
				ivilduic	0.0	18.4	10.4	32.7	02.7	8.20	0.20	98.20	30.01	6.57	0.00		2.5	2.0	2.01	5.2	4.0	0.00	6.0	0.0	<u> </u>	<1.6	1.0	1.00
						18.4		32.7		8.20		97.60		6.53			2.5			5.8		l	5.0			<1.6		
				Bottom	6.4	18.4	18.4	32.7	32.7	8.20	8.20	97.90	97.77	6.55	6.54	6.54	2.6	2.6		5.4	5.8		5.0	5.0		<1.6	1.6	
						18.4		32.7		8.20		97.80		6.54			2.6			6.2			5.0			<1.6		
15-Jan-19	Sunny	Calm	6:16			18.9		32.1		7.98		92.20		7.08			2.2			0.9			6.0			<1.6		
	•			Surface	1	18.9	18.9	32.2	32.1	7.98	7.98	92.10	92.17	7.07	7.08		2.2	2.2		1.4	1.3		6.0	6.0		<1.6	1.6	
						18.9		32.1		7.98		92.20		7.08		7.07	2.3			1.5		1	6.0			<1.6		
						18.9	40.0	32.2	00.0	7.98	7.00	92.00	04.07	7.06	7.00		2.4			1.2	4.0		6.0			<1.6		4.00
			l	Middle	3.7	18.9	18.9	32.3	32.2	7.98	7.98	91.90	91.97	7.05	7.06		2.4	2.4	2.39	1.7	1.6	1.44	6.0	6.0	6.00	<1.6	1.6	1.60
			l		\vdash	18.9		32.2		7.98		92.00		7.06			2.3	1	ł	1.8		ł	6.0			<1.6	 	
				Bottom	6.3	18.9 18.9	18.9	32.3 32.3	32.3	7.98 7.98	7.98	91.90 91.70	91.83	7.05 7.03	7.04	7.04	2.6 2.6	2.6		1.2 1.7	1.5		6.0 6.0	6.0		<1.6 <1.6	1.6	
			l	DOMOIT	0.5	18.9	10.5	32.3	32.3	7.98	1.30	91.70	31.03	7.03	7.04	7.04	2.5	2.0	l	1.7	1.5	l	6.0	0.0		<1.6	1.0	
						10.3		UZ.U		7.30		51.50		7.00			2.0			1.0			0.0			<1.0		

Water Quality Monitoring Results at IS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ture (°C)	Salinit	y (ppt)	Г	Н	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	s (mg/L)		opper (µm/	/L)	Tot	al PAH (µı	m/L)
	Condition	Condition**	Time	·	. ,	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*		Average			Average		Value	Average	DA*
17-Jan-19	Fine	Moderate	20:14	Surface	1	18.6 18.5 18.5	18.5	33.5 33.5 33.5	33.5	8.25 8.26 8.25	8.25	87.10 92.00 91.90	90.33	6.68 7.06 7.04	6.93	6.79	2.0 2.3 2.2	2.2		1.2 1.6 1.3	1.4		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.8	18.4 18.5 18.4	18.4	33.6 33.5 33.6	33.6	8.27 8.25 8.26	8.26	85.90 86.50 86.60	86.33	6.61 6.66 6.66	6.64	6.79	2.6 2.3 2.6	2.5	2.46	0.8 0.8 0.6	0.7	1.16	8.0 8.0 7.0	7.7	<u>7.78</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.6	18.3 18.3 18.4	18.3	33.5 33.5 33.5	33.5	8.28 8.25 8.26	8.26	80.00 84.90 83.00	82.63	6.16 6.51 6.38	6.35	6.35	2.7 2.8 2.6	2.7		1.5 1.3 1.3	1.4		8.0 7.0 8.0	7.7		<1.6 <1.6 <1.6	1.6	
19-Jan-19	Fine	Moderate	22:20	Surface	1	18.2 18.2 18.2	18.2	33.6 33.6 33.6	33.6	8.21 8.24 8.20	8.22	91.20 94.40 96.20	93.93	6.76 7.00 7.14	6.97	6.80	2.0 2.0 2.1	2.0		1.8 1.5 2.3	1.9		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.7	18.1 18.1 18.1	18.1	33.6 33.6 33.6	33.6	8.23 8.21 8.21	8.22	89.10 89.30 89.10	89.17	6.63 6.64 6.62	6.63	0.00	2.3 2.4 2.4	2.4	2.41	2.7 2.9 2.2	2.6	2.70	5.0 5.0 5.0	5.0	5.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.3	18.1 18.0 18.1	18.0	33.6 33.6 33.6	33.6	8.20 8.23 8.23	8.22	87.80 86.70 88.30	87.60	6.52 6.44 6.55	6.50	6.50	2.9 2.8 2.8	2.8		3.5 3.9 3.5	3.6		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
22-Jan-19	Fine	Moderate	3:15	Surface	1	17.9 17.9 17.9	17.9	32.5 32.5 32.4	32.5	8.19 8.19 8.18	8.19	91.20 91.00 90.50	90.90	6.62 6.61 6.58	6.60	6.62	2.1 2.2 2.3	2.2		2.3 2.4 2.3	2.3		4.0 5.0 4.0	4.3		<1.6 <1.6 <1.6	1.6	
				Middle	3.8	17.8 17.8 17.8	17.8	32.7 32.7 32.7	32.7	8.20 8.20 8.20	8.20	91.70 91.20 91.50	91.47	6.64 6.61 6.63	6.63		2.5 2.6 2.5	2.5	2.42	2.3 2.3 2.9	2.5	2.90	5.0 4.0 4.0	4.3	4.44	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.6	17.8 17.8 17.8	17.8	32.7 32.7 32.7	32.7	8.20 8.20 8.22	8.21	90.90 91.10 91.10	91.03	6.59 6.61 6.60	6.60	6.60	2.6 2.4 2.6	2.5		3.5 4.1 4.0	3.9		5.0 4.0 5.0	4.7		<1.6 <1.6 <1.6	1.6	
24-Jan-19	Fine	Moderate	3:14	Surface	1	18.4 18.4 18.4	18.4	31.9 31.9 31.9	31.9	8.01 8.01 8.01	8.01	91.80 91.60 91.80	91.73	7.13 7.12 7.12	7.12	7.12	2.2 2.0 2.2	2.1		5.7 5.0 4.5	5.1		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.9	18.3 18.3 18.3	18.3	31.9 31.9 31.9	31.9	8.01 8.01 8.01	8.01	91.50 91.60 91.50	91.53	7.12 7.12 7.12	7.12		2.3 2.4 2.3	2.3	2.30	5.7 6.2 6.5	6.1	5.32	8.0 8.0 8.0	8.0	8.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.7	18.3 18.4 18.3	18.3	31.9 31.8 31.8	31.8	8.01 8.01 8.01	8.01	91.40 91.40 91.50	91.43	7.11 7.10 7.11	7.11	7.11	2.5 2.5 2.3	2.4		4.9 5.1 4.3	4.8		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
26-Jan-19	Fine	Moderate	5:19	Surface	1	18.5 18.5 18.5	18.5	32.0 32.0 32.0	32.0	8.04 8.04 8.05	8.04	90.30 90.20 90.30	90.27	7.04 7.03 7.04	7.04	7.06	2.3 2.3 2.5	2.4		4.4 4.3 4.6	4.4		7.0 7.0 7.0	7.0		<1.6 <1.6 <1.6	1.6	
				Middle	4.0	18.5 18.4 18.4	18.4	32.0 32.0 32.0	32.0	8.07 8.07 8.07	8.07	90.70 90.90 90.70	90.77	7.08 7.08 7.06	7.07		2.7 2.5 2.7	2.6	2.61	4.1 5.5 4.4	4.7	4.93	7.0 7.0 7.0	7.0	<u>7.00</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	7.0	18.4 18.4 18.4	18.4	32.1 32.1 32.1	32.1	8.08 8.08 8.09	8.08	90.70 90.20 90.10	90.33	7.08 7.03 7.03	7.05	7.05	2.8 2.8 2.9	2.8		6.2 5.7 5.2	5.7		7.0 7.0 7.0	7.0		<1.6 <1.6 <1.6	1.6	
29-Jan-19	Cloudy	Moderate	20:06	Surface	1	18.4 18.4 18.4	18.4	32.6 32.6 32.6	32.6	8.16 8.13 8.14	8.14	100.60 98.70 99.00	99.43	6.87 6.73 6.76	6.79	6.77	2.2 2.2 2.3	2.2		2.8 2.8 2.0	2.5		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.8	18.4 18.4 18.3	18.4	32.6 32.6 32.6	32.6	8.15 8.17 8.13	8.15	99.00 99.70 98.60	99.10	6.75 6.80 6.72	6.76		2.5 2.6 2.5	2.5	2.43	2.3 2.4 2.1	2.3	2.56	5.0 5.0 4.0	4.7	4.67	<1.6 <1.6 <1.6	1.6	1.60
24 1 40	Fi	Madass	24.22	Bottom	6.4	18.4 18.4 18.4	18.4	32.6 32.6 32.6	32.6	8.15 8.13 8.18	8.15	98.90 98.50 99.50	98.97	6.75 6.72 6.79	6.75	6.75	2.6 2.5 2.5	2.5		2.4 3.4 2.8	2.9		4.0 5.0 4.0	4.3		<1.6 <1.6 <1.6	1.6	
31-Jan-19	Fine	Moderate	21:23	Surface	1	18.6 18.7 18.6	18.6	31.9 31.9 31.9	31.9	8.03 8.03 8.03	8.03	90.40 90.30 90.40	90.37	6.85 6.84 6.85	6.85	6.84	1.9 1.9 1.8	1.9		2.1 1.9 1.4	1.8		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
				Middle	3.9	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.03 8.04 8.04	8.04	90.10 90.20 90.30	90.20	6.84 6.84 6.84	6.84		2.1 2.0 2.0	2.0	2.17	1.6 1.4 2.2	1.7	2.09	5.0 5.0 5.0	5.0	4.89	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	6.8	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.04 8.04 8.04	8.04	90.00 90.00 89.90	89.97	6.82 6.83 6.82	6.82	6.82	2.7 2.5 2.6	2.6		3.2 2.8 2.2	2.7		5.0 5.0 4.0	4.7		<1.6 <1.6 <1.6	1.6	

Water Quality Monitoring Results at IS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ture (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Tu	urbidity(NT	U)	Susper	nded Solids	s (mg/L)	С	opper (μm	/L)	To	tal PAH (µr	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
3-Jan-19	Cloudy	Moderate	4:07			17.8		33.7		8.19		77.90		5.57			2.7			2.9			5.0			<1.6		
				Surface	1	17.8	17.8	33.7	33.7	8.20	8.20	78.80	78.90	5.64	5.65		2.7	2.7		2.9	2.4		5.0	5.0		<1.6	1.6	
						17.8		33.7		8.20		80.00		5.73		5.64	2.8			1.5		ł	5.0		ł	<1.6		
				Middle	3.9	17.8 17.8	17.8	33.7 33.7	33.7	8.20 8.21	8.20	78.10 79.40	78.70	5.59 5.68	5.63		2.8	2.8	2.77	2.0	1.9	2 20	4.0	4.0	4 44	<1.6	1.6	1.60
				ivildale	3.9	17.8	17.0	33.7	33.1	8.20	0.20	78.60	70.70	5.63	5.65		2.8 2.8	2.0	2.11	1.6 2.0	1.9	2.28	4.0 4.0	4.0	4.44	<1.6 <1.6	1.6	1.00
						17.8		33.7		8.20		78.10		5.59			2.7			2.3		ł	4.0		ł	<1.6		
				Bottom	6.8	17.8	17.8	33.7	33.7	8.23	8.21	79.30	78.60	5.68	5.63	5.63	2.8	2.8		2.7	2.5		4.0	4.3		<1.6	1.6	
						17.8		33.7		8.20	5.2.	78.40		5.61	0.00		2.8			2.6			5.0			<1.6		
5-Jan-19	Sunny	Calm	5:46			18.9		33.1		8.06		93.00		7.28			2.0			2.4			4.0			<1.6		
	,			Surface	1	18.9	18.9	33.1	33.1	8.07	8.07	92.90	93.00	7.28	7.28		2.0	2.0		2.7	2.5		4.0	4.0		<1.6	1.6	
						18.9		33.1		8.07		93.10		7.29		7.27	1.9			2.3			4.0			<1.6		
						19.0		33.2		8.06		92.50		7.24		1.21	2.2			2.4		Ī	4.0		1	<1.6		
				Middle	4.0	19.0	19.0	33.2	33.2	8.06	8.06	92.70	92.67	7.25	7.25		2.2	2.2	2.19	2.4	2.6	2.96	4.0	4.3	4.11	<1.6	1.6	1.60
						19.0		33.2		8.06		92.80		7.26			2.3			3.1			5.0			<1.6		
				D #		19.1	40.0	33.2	00.0	8.06	0.00	92.60	00.70	7.23	7.04	7.04	2.2			3.9	0.0		4.0	4.0		<1.6	4.0	
				Bottom	6.8	19.0 19.0	19.0	33.2 33.2	33.2	8.06 8.05	8.06	92.70 92.80	92.70	7.24 7.25	7.24	7.24	2.5	2.4		3.8 3.6	3.8		4.0 4.0	4.0		<1.6 <1.6	1.6	
8-Jan-19	Eine	Moderate	7:37			18.3		33.2		8.32										3.8								
0-Jan-19	Fine	Woderate	1.31	Surface	1	18.3	18.3	33.7	33.7	8.31	8.32	96.10 96.80	96.37	7.38 7.43	7.40		1.6 1.6	1.6		4.2	3.6		6.0 6.0	6.0		<1.6 <1.6	1.6	
				Canaco		18.3	10.0	33.7	00.1	8.34	0.02	96.20	00.07	7.38	7.10		1.7	1.0		3.2	0.0		6.0	0.0		<1.6	1.0	
						18.3		33.7		8.31		92.30		7.09		7.25	1.8			4.0		ł	6.0		ł	<1.6		
				Middle	3.8	18.3	18.3	33.7	33.7	8.33	8.33	92.60	92.60	7.10	7.11		1.8	1.8	1.74	3.4	3.9	3.62	6.0	6.3	6.11	<1.6	1.6	1.60
						18.3		33.7		8.35		92.90		7.13			1.7			4.2			7.0			<1.6		
						18.3		33.7		8.33		93.00		7.14			1.9			3.2		1	6.0		1	<1.6		
				Bottom	6.6	18.3	18.3	33.7	33.7	8.37	8.34	93.20	92.87	7.15	7.13	7.13	1.8	1.8		3.9	3.4		6.0	6.0		<1.6	1.6	
						18.3		33.7		8.31		92.40		7.09			1.8			3.2			6.0			<1.6		
10-Jan-19	Sunny	Moderate	8:49			18.5		33.4		8.37		95.00		7.29			2.0			1.0			6.0			<1.6		
				Surface	1	18.5	18.5	33.4	33.4	8.39	8.37	94.80	95.73	7.27	7.34		2.1	2.1		1.2	1.1		6.0	6.0		<1.6	1.6	
						18.5		33.4		8.36		97.40		7.46		7.16	2.2			1.1			6.0			<1.6		
				N.C.J.JI.	4.0	18.4	40.4	33.4	20.4	8.36	0.00	90.30	00.70	6.94	0.07		2.4	0.5	0.04	1.4	4.0	4.40	6.0		F 00	<1.6	4.0	4.00
				Middle	4.0	18.4 18.5	18.4	33.4 33.4	33.4	8.38 8.40	8.38	91.30 90.60	90.73	7.01	6.97		2.5	2.5	2.34	1.3	1.3	1.40	6.0	6.0	<u>5.89</u>	<1.6	1.6	1.60
						18.5		33.4		8.38		90.60		6.96 7.07			2.5 2.5			2.0			6.0			<1.6 <1.6		
				Bottom	6.9	18.5	18.5	33.4	33.4	8.42	8.39	92.10	91.30	7.07	7.01	7.01	2.5	2.5		1.7	1.8		6.0	5.7		<1.6	1.6	
				Dottoili	0.5	18.5	10.5	33.4	33.4	8.36	0.55	90.50	31.30	6.95	7.01	7.01	2.0	2.5		1.7	1.0		5.0	5.7		<1.6	1.0	
12-Jan-19	Sunny	Moderate	10:07			18.5		33.0		8.12		99.80		6.85			2.3			7.6			5.0			<1.6		
12 0411 13	Outliny	Woderate	10.07	Surface	1	18.5	18.5	33.0	33.0	8.14	8.12	101.40	100.23	6.96	6.88		2.2	2.3		7.3	7.7		5.0	5.0		<1.6	1.6	
						18.5		33.0		8.11		99.50		6.82		0.00	2.3			8.1			5.0			<1.6		
						18.4		33.0		8.15		100.50		6.89		6.86	2.6			8.2		1	5.0		1	<1.6		
				Middle	3.8	18.4	18.4	33.0	33.0	8.11	8.13	99.40	99.90	6.81	6.85		2.5	2.5	2.46	8.1	8.4	8.22	5.0	5.0	5.00	<1.6	1.6	1.60
						18.4		33.0		8.13		99.80		6.84			2.5			8.8			5.0			<1.6		
						18.4		33.0		8.13		99.70		6.84			2.5			8.4		1	5.0		1	<1.6		
				Bottom	6.4	18.5	18.4	33.0	33.0	8.11	8.13	99.30	99.77	6.81	6.84	6.84	2.5	2.6		9.0	8.6		5.0	5.0		<1.6	1.6	
						18.4		33.0		8.16		100.30		6.88			2.7			8.5			5.0			<1.6		
15-Jan-19	Sunny	Calm	12:08			18.8		32.3		8.01		92.70		7.12			2.5			1.5			6.0			<1.6		
				Surface	1	18.9	18.8	32.3	32.3	8.00	8.00	92.70	92.70	7.12	7.12		2.5	2.5		1.0	1.4		6.0	6.0		<1.6	1.6	
			l	—		18.8		32.3		8.00		92.70	<u> </u>	7.12		7.11	2.5			1.8		l	6.0	<u> </u>	l	<1.6		
			l	Middle	3.8	18.8	18.8	32.3	32.3	8.00	8.00	92.50	92.50	7.11	7.11		2.7	2.6	2.61	1.6	1.5	1.34	6.0	6.0	6.11	<1.6	1.6	1.60
			l	Mildule	3.0	18.8 18.8	10.0	32.3 32.3	32.3	8.01 8.00	0.00	92.60 92.40	32.30	7.11 7.10	7.11		2.6	2.0	2.01	1.8 1.2	1.5	1.54	6.0 6.0	0.0	0.11	<1.6 <1.6	1.0	1.00
			l			18.8		32.3		8.00		92.40	l	7.10			2.8			1.1		l	7.0	 	l	<1.6		
			l	Bottom	6.6	18.8	18.8	32.3	32.3	8.00	8.00	92.30	92.43	7.10	7.10	7.10	2.6	2.7		0.9	1.1	l	6.0	6.3	l	<1.6	1.6	
			l	20110111	0.0	18.8		32.3	02.0	8.01	0.00	92.50	020	7.10			2.7			1.2	'''	l	6.0	0.0	l	<1.6		
						10.0		02.0		0.01		JZ.JU		7.10	1		4.1			1.4			0.0			\ \1.0	1	

Water Quality Monitoring Results at IS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Ti	urbidity(NT	U)	Susper	ided Solids	s (mg/L)	С	opper (µm.	/L)	To	tal PAH (µn	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
17-Jan-19	Sunny	Moderate	13:33			18.3		33.6		8.23		87.40		6.73			2.6			1.6			2.0			<1.6		
	,			Surface	1	18.5	18.4	33.6	33.6	8.22	8.22	86.40	86.63	6.67	6.68		2.6	2.6		2.1	1.8		1.0	1.3		<1.6	1.6	
						18.5		33.5		8.21		86.10		6.64		6.66	2.7			1.8			1.0			<1.6		
						18.2		33.6		8.22		85.20		6.54		0.00	2.7			1.7			1.0			<1.6		1
				Middle	3.7	18.3	18.2	33.6	33.6	8.22	8.22	86.80	86.40	6.66	6.64		2.8	2.7	2.76	1.8	1.6	2.18	1.0	1.0	1.22	<1.6	1.6	1.60
						18.2		33.6		8.23		87.20		6.73			2.6			1.2			1.0		_	<1.6		
				_		18.1		33.5		8.22		81.40		6.30			2.9			2.6			1.0			<1.6		
				Bottom	6.4	18.2	18.2	33.5	33.5	8.23	8.22	83.30	83.27	6.43	6.43	6.43	3.0	2.9		3.5	3.1		1.0	1.3		<1.6	1.6	
						18.2		33.5		8.22		85.10		6.57			2.9			3.3			2.0			<1.6		
19-Jan-19	Fine	Moderate	17:05	0 (17.8	47.0	33.5	00.5	8.26	0.07	92.40	00.50	6.93	0.04		1.3	4.0		3.0			5.0	- 0		<1.6	4.0	
				Surface	1	17.9	17.8	33.5	33.5	8.27	8.27	92.70	92.53	6.95	6.94		1.2	1.3		2.6	3.0		5.0	5.0		<1.6	1.6	
						17.9		33.5		8.27		92.50		6.94		6.95	1.3			3.3			5.0		4	<1.6		ł
				Middle	3.7	17.9	17.9	33.6	33.6	8.27	8.27	92.60	92.77	6.94	6.95		1.5	1.5	1.47	3.2	2.9	2.70	5.0	5.7	5.67	<1.6	1.6	1.60
				Middle	3.1	17.9 17.9	17.5	33.6 33.6	33.0	8.27 8.28	0.21	93.10 92.60	32.11	6.98 6.94	0.55		1.4 1.5	1.5	1.47	2.5 2.9	2.5	2.70	6.0 6.0	3.7	3.07	<1.6 <1.6	1.0	1.00
						17.9		33.6		8.29	1	90.90		6.81	-		1.6			2.9			6.0		-	<1.6		ł
				Bottom	6.5	17.9	17.9	33.6	33.6	8.27	8.28	91.60	91.37	6.86	6.84	6.84	1.7	1.7		2.4	2.3		6.0	6.3		<1.6	1.6	
				Dottoin	0.0	17.9	17.5	33.6	00.0	8.27	0.20	91.60	31.57	6.86	0.04	0.04	1.7	1.7		1.8	2.0		7.0	0.5		<1.6	1.0	
22-Jan-19	Fine	Moderate	6:40			17.9		32.6		8.20		95.50		6.93			1.9			2.4			4.0			<1.6		
22 0411 13	Tille	Woderate	0.40	Surface	1	17.9	17.9	32.6	32.6	8.20	8.20	95.90	95.63	6.97	6.95		1.9	2.0		3.1	2.6		4.0	4.0		<1.6	1.6	
						17.9		32.6		8.21		95.50		6.94			2.1			2.3			4.0			<1.6		
						17.9		32.6		8.20		93.70		6.80		6.88	2.0			3.7			4.0			<1.6		i
				Middle	3.8	17.9	17.9	32.6	32.6	8.21	8.21	93.60	93.83	6.79	6.81		1.9	1.9	2.13	3.2	3.3	2.68	5.0	4.3	4.22	<1.6	1.6	1.60
						17.9		32.6		8.22		94.20		6.84			1.9			3.1			4.0			<1.6		
						17.9		32.6		8.23		94.50		6.86			2.4			2.5			5.0		1	<1.6		1
				Bottom	6.6	17.9	17.9	32.6	32.6	8.21	8.21	93.80	93.97	6.81	6.82	6.82	2.6	2.5		1.9	2.1		4.0	4.3		<1.6	1.6	
						17.9		32.6		8.20		93.60		6.79			2.5			1.9			4.0			<1.6		
24-Jan-19	Sunny	Moderate	8:23			18.4		31.9		8.01		91.80		7.13			2.2			5.2			9.0			<1.6		
				Surface	1	18.4	18.4	31.9	31.9	8.01	8.01	91.80	91.80	7.13	7.13		2.3	2.2		3.6	4.3		9.0	8.7		<1.6	1.6	
						18.4		31.9		8.01		91.80		7.13		7.12	2.2			4.2			8.0		_	<1.6		
						18.3		31.9		8.01		91.50		7.11			2.5			3.7			8.0			<1.6		
				Middle	3.8	18.3	18.3	31.9	31.9	8.01	8.01	91.60	91.57	7.12	7.12		2.3	2.5	2.67	4.8	4.3	4.63	8.0	8.3	<u>8.56</u>	<1.6	1.6	1.60
						18.4		31.9		8.01		91.60		7.12			2.6			4.5			9.0		-	<1.6		ł
				Pottom	6.9	18.3	10.2	31.8	24.0	8.01	0.01	91.40	91.40	7.10	7 1 1	711	3.4	3.3		4.9	E 0		9.0	8.7		<1.6	1.6	
				Bottom	0.9	18.3 18.3	18.3	31.8 31.8	31.8	8.01 8.01	8.01	91.40 91.40	91.40	7.11 7.11	7.11	7.11	3.2	3.3		5.6 5.2	5.2		8.0 9.0	0.7		<1.6	1.6	
26-Jan-19	Fine	Moderate	9:09			18.6		31.9		8.02		89.50		6.98	-		2.2			5.5			7.0		_	<1.6		
20-Jan-13	Tille	Woderate	3.03	Surface	1	18.6	18.6	32.0	31.9	8.02	8.02	89.70	89.50	6.99	6.98		2.3	2.3		5.6	5.6		7.0	7.0		<1.6	1.6	
				Gariago		18.6	10.0	32.0	01.0	8.03	0.02	89.30	00.00	6.97	0.00		2.4	2.0		5.7	0.0		7.0	7.0		<1.6	1.0	
						18.5		32.0		8.04		89.90		7.02		6.99	2.7			5.6			7.0		1	<1.6		1
				Middle	4.1	18.6	18.5	32.0	32.0	8.03	8.04	89.90	89.77	7.00	7.00		2.6	2.6	2.60	5.6	5.9	5.56	8.0	7.7	7.44	<1.6	1.6	1.60
						18.5		32.0		8.04		89.50		6.98			2.6			6.5			8.0			<1.6		
						18.5		32.0		8.04		89.50		6.99			2.8			4.5			8.0		1	<1.6		1
				Bottom	7.2	18.5	18.5	32.0	32.0	8.04	8.04	89.80	89.50	6.99	6.98	6.98	2.9	2.9		5.1	5.2		7.0	7.7		<1.6	1.6	
						18.5		32.0		8.04		89.20		6.96			2.9			5.9			8.0			<1.6		
29-Jan-19	Sunny	Moderate	14:08			18.6		32.3		8.15		98.20		6.56			2.5			4.3			4.0			<1.6		
				Surface	1	18.6	18.6	32.3	32.3	8.14	8.15	98.30	98.23	6.56	6.56		2.5	2.5		3.9	4.1		4.0	4.0		<1.6	1.6	
						18.6		32.3		8.15		98.20		6.55		6.54	2.4			4.1			4.0		_	<1.6		
						18.5		32.3		8.14		97.80		6.53		0.0 1	2.5			3.5			5.0			<1.6		
				Middle	3.8	18.5	18.5	32.3	32.3	8.14	8.14	97.60	97.67	6.51	6.52		2.4	2.5	2.46	3.7	3.3	3.77	4.0	4.3	4.22	<1.6	1.6	1.60
						18.5		32.3		8.14		97.60		6.52			2.5			2.7			4.0		_	<1.6		
				D-#		18.5	40.5	32.3	20.0	8.14	0.44	97.40	07.07	6.50	0.50	0.50	2.4	0.4		3.7	2.0		4.0	4.0		<1.6	4.0	
				Bottom	6.6	18.5 18.5	18.5	32.3 32.3	32.3	8.14	8.14	97.20 97.50	97.37	6.49	6.50	6.50	2.4 2.5	2.4		4.0	3.9		4.0	4.3		<1.6	1.6	
24 (40	C	Madazata	45.40							8.14				6.51						4.0			5.0		-	<1.6		
31-Jan-19	Sunny	Moderate	15:43	Surface	1	18.6	18.6	31.9	31.9	8.03	8.04	90.30	90.30	6.85	6.85	l	2.0	1.9		3.4	2.9		5.0	5.0		<1.6	1.6	İ
				Juliace	l '	18.6 18.6	10.0	31.9 31.9	31.3	8.04 8.04	0.04	90.30 90.30	30.30	6.85 6.84	0.03	l	1.8 1.9	1.5		3.5 1.9	2.5		5.0 5.0	3.0		<1.6 <1.6	1.0	İ
						18.6		31.9		8.04	l	90.30		6.85	1	6.85	1.9			1.6			5.0		1	<1.6	1	ł
				Middle	3.9	18.6	18.6	31.9	31.9	8.04	8.04	90.30	90.27	6.85	6.85	l	2.1	2.0	2.08	2.2	1.9	2.18	5.0	5.0	5.00	<1.6	1.6	1.60
			1	madic	0.0	18.6	. 5.0	31.9	51.5	8.04	5.04	90.30	55.21	6.85	5.00	1	2.1	2.0	2.00	1.9		2.10	5.0	3.0	2.00	<1.6		
						18.6		31.9		8.04		90.10		6.83			2.2			1.9			5.0		1	<1.6		i
				Bottom	6.6	18.6	18.6	31.9	31.9	8.04	8.04	90.00	90.03	6.83	6.83	6.83	2.3	2.3		1.1	1.7		5.0	5.0		<1.6	1.6	İ
						18.6		31.9		8.04	l	90.00		6.83		l	2.4			2.1			5.0			<1.6		l
				•							_				_	_				_								_

Water Quality Monitoring Results at IS3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	s (mg/L)	С	opper (μm/	/L)	То	tal PAH (µ	m/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jan-19	Cloudy	Moderate	22:34	Surface	1	17.7 17.7 17.7	17.7	33.7 33.7 33.7	33.7	8.27 8.27 8.27	8.27	80.50 86.10 78.90	81.83	5.80 6.22 5.69	5.90		3.0 3.2 3.1	3.1		1.5 2.0 1.5	1.7		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
				Middle	8.4	17.7 17.7 17.7	17.7	33.7 33.7 33.7	33.7	8.27 8.28 8.26	8.27	80.10 78.90 83.40	80.80	5.78 5.69 6.02	5.83	5.87	3.1 3.1 3.1	3.1	3.11	1.3 1.6 1.2	1.4	1.59	4.0 4.0 5.0	4.3	4.78	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	15.6	17.7 17.6 17.6	17.6	33.7 33.7 33.7	33.7	8.26 8.26 8.30	8.27	81.80 79.50 78.80	80.03	5.91 5.74 5.69	5.78	5.78	3.1 3.1 3.2	3.1		1.9 1.6 1.7	1.7		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
4-Jan-19	Sunny	Calm	23:44	Surface	1	18.7 18.7 18.7	18.7	33.1 33.1 32.9	33.0	8.05 8.05 8.05	8.05	94.20 94.10 94.10	94.13	7.21 7.20 7.21	7.21	7.19	3.2 3.0 3.0	3.1		3.1 3.4 3.8	3.4		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
				Middle	8.1	18.8 18.7 18.7	18.7	33.1 33.1 33.1	33.1	8.05 8.05 8.05	8.05	93.80 93.90 94.00	93.90	7.17 7.18 7.19	7.18	7.19	3.1 3.3 3.3	3.2	3.20	3.7 3.9 3.4	3.7	3.41	4.0 4.0 4.0	4.0	4.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	15.1	18.7 18.8 18.8	18.7	33.1 33.1 33.2	33.1	8.05 8.05 8.05	8.05	94.00 93.90 93.90	93.93	7.18 7.18 7.17	7.18	7.18	3.4 3.3 3.2	3.3		3.1 2.9 3.4	3.1		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
8-Jan-19	Fine	Moderate	1:21	Surface	1	18.3 18.3 18.3	18.3	33.7 33.8 33.8	33.8	8.28 8.28 8.29	8.28	91.80 92.40 91.90	92.03	7.04 7.08 7.05	7.06	7.01	1.9 1.9 1.9	1.9		2.9 2.8 2.6	2.8		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	
				Middle	9.0	18.4 18.3 18.3	18.3	33.8 33.8 33.8	33.8	8.28 8.28 8.29	8.28	91.10 90.80 90.70	90.87	6.98 6.96 6.95	6.96		2.0 2.0 2.0	2.0	1.97	2.6 2.6 3.3	2.8	3.31	6.0 6.0 6.0	6.0	6.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	17.1	18.4 18.4 18.3	18.3	33.8 33.8 33.8	33.8	8.28 8.29 8.28	8.28	91.00 91.30 91.00	91.10	6.97 6.99 6.97	6.98	6.98	1.9 2.1 2.0	2.0		4.3 4.5 4.2	4.3		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	
10-Jan-19	Fine	Moderate	3:24	Surface	1	18.5 18.5 18.5	18.5	33.4 33.4 33.4	33.4	8.33 8.33 8.34	8.33	88.90 88.90 88.30	88.70	6.83 6.84 6.80	6.82	6.81	2.7 2.6 2.5	2.6		1.5 0.9 0.9	1.1		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	
				Middle	9.2	18.5 18.5 18.5	18.5	33.4 33.4 33.4	33.4	8.34 8.33 8.35	8.34	88.80 87.80 88.40	88.33	6.82 6.76 6.80	6.79		2.8 2.8 2.8	2.8	2.72	2.1 1.8 1.8	1.9	1.53	6.0 6.0 6.0	6.0	6.00	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	17.4	18.5 18.5 18.5	18.5	33.4 33.4 33.4	33.4	8.34 8.34 8.33	8.34	88.20 88.00 88.00	88.07	6.79 6.77 6.77	6.78	6.78	2.9 2.7 2.7	2.8		1.3 1.5 2.0	1.6		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	
12-Jan-19	Cloudy	Moderate	2:38	Surface	1	18.2 18.2 18.2	18.2	32.7 32.7 32.7	32.7	8.19 8.19 8.19	8.19	98.10 99.30 98.50	98.63	6.58 6.66 6.61	6.62	6.61	1.8 1.9 1.8	1.8		5.4 5.9 5.6	5.6		5.0 6.0 5.0	5.3		<1.6 <1.6 <1.6	1.6	
				Middle	8.5	18.2 18.2 18.2	18.2	32.9 32.8 32.9	32.8	8.17 8.18 8.17	8.17	98.40 98.80 98.10	98.43	6.60 6.62 6.57	6.60		2.5 2.4 2.4	2.4	2.31	5.5 5.3 4.9	5.2	5.43	6.0 5.0 5.0	5.3	5.33	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	16.1	18.2 18.2 18.2	18.2	32.9 32.9 32.9	32.9	8.17 8.17 8.17	8.17	97.30 97.00 96.90	97.07	6.52 6.50 6.49	6.50	6.50	2.6 2.7 2.7	2.7		5.7 5.4 5.2	5.4		6.0 5.0 5.0	5.3		<1.6 <1.6 <1.6	1.6	
15-Jan-19	Sunny	Calm	4:51	Surface	1	18.8 18.8 18.8	18.8	32.3 32.3 32.3	32.3	7.97 7.97 7.98	7.97	92.40 92.50 92.50	92.47	7.10 7.11 7.10	7.10	7.10	2.2 2.1 2.1	2.1		1.0 1.1 1.7	1.3		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	
				Middle	8.0	18.8 18.8 18.8	18.8	32.3 32.3 32.3	32.3	7.98 7.97 7.97	7.97	92.40 92.40 92.20	92.33	7.09 7.09 7.08	7.09		2.1 2.1 2.2	2.1	2.14	1.4 1.2 1.1	1.2	1.31	6.0 6.0 6.0	6.0	<u>6.11</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	15.1	18.8 18.8 18.8	18.8	32.3 32.3 32.3	32.3	7.97 7.97 7.98	7.97	92.10 92.10 92.30	92.17	7.07 7.08 7.08	7.08	7.08	2.2 2.2 2.1	2.2		1.5 1.6 1.2	1.4		6.0 6.0 7.0	6.3		<1.6 <1.6 <1.6	1.6	

Water Quality Monitoring Results at IS3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ture (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	T	urbidity(NT	U)	Susper	nded Solids	(mg/L)	l c	opper (µm/	L)	To	tal PAH (µr	m/L)
	Condition	Condition**	Time		` '	Value	Average			Value	Average		, ,					Average			Average	,		Average			Average	,
17-Jan-19	Fine	Moderate	21:30	Surface	1	18.5 18.5 18.5	18.5	33.6 33.6 33.6	33.6	8.25 8.25 8.25	8.25	93.60 92.00 92.80	92.80	7.17 7.05 7.11	7.11		1.7 2.1 1.8	1.9		1.1 1.3 1.3	1.2		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
				Middle	8.8	18.4 18.4 18.2	18.3	33.6 33.6 33.6	33.6	8.26 8.25 8.25	8.25	93.50 92.40 91.50	92.47	7.19 7.10 7.06	7.12	7.11	2.2 2.2 2.3	2.2	2.17	0.6 1.2 1.2	1.0	1.29	8.0 8.0 7.0	7.7	<u>7.89</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	16.4	18.3 18.3 18.3	18.3	33.5 33.6 33.5	33.5	8.25 8.27 8.25	8.26	92.00 93.80 92.50	92.77	7.08 7.23 7.12	7.14	7.14	2.3 2.4 2.5	2.4		1.4 1.7 1.8	1.6		8.0 8.0 8.0	8.0		<1.6 <1.6 <1.6	1.6	
19-Jan-19	Fine	Moderate	23:48	Surface	1	18.2 18.2 18.2	18.2	33.6 33.6 33.6	33.6	8.27 8.25 8.24	8.25	94.30 94.20 97.00	95.17	6.99 6.99 7.19	7.06	6.97	2.6 2.7 2.5	2.6		2.4 2.0 2.1	2.2		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
				Middle	8.8	18.0 18.1 18.1	18.1	33.6 33.6 33.6	33.6	8.27 8.25 8.24	8.25	91.80 92.20 93.20	92.40	6.84 6.86 6.94	6.88	0.01	3.0 2.8 3.0	2.9	2.82	2.1 1.5 2.4	2.0	<u>2.16</u>	5.0 5.0 5.0	5.0	<u>5.00</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	16.4	18.0 18.1 18.0	18.0	33.6 33.5 33.6	33.6	8.26 8.25 8.25	8.25	92.10 92.60 93.00	92.57	6.85 6.89 6.93	6.89	6.89	2.8 3.0 3.0	2.9		2.5 2.1 2.3	2.3		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	
22-Jan-19	Fine	Moderate	1:51	Surface	1	17.8 17.8 17.8	17.8	32.6 32.7 32.7	32.6	8.18 8.19 8.18	8.18	92.80 92.80 93.00	92.87	6.73 6.73 6.75	6.74	6.72	2.9 2.8 3.0	2.9		2.4 2.9 2.4	2.6		4.0 5.0 5.0	4.7		<1.6 <1.6 <1.6	1.6	
				Middle	8.8	17.8 17.8 17.8	17.8	32.7 32.7 32.7	32.7	8.18 8.18 8.19	8.18	92.70 92.40 92.30	92.47	6.72 6.70 6.69	6.70		3.4 3.2 3.2	3.3	3.32	1.8 2.4 2.2	2.1	2.71	5.0 5.0 5.0	5.0	4.78	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	16.5	17.8 17.8 17.8	17.8	32.7 32.7 32.7	32.7	8.18 8.19 8.19	8.19	92.50 92.50 92.90	92.63	6.70 6.70 6.73	6.71	6.71	3.7 3.7 4.0	3.8		3.0 3.5 3.8	3.4		5.0 4.0 5.0	4.7		<1.6 <1.6 <1.6	1.6	
24-Jan-19	Fine	Moderate	1:58	Surface	1	18.4 18.4 18.4	18.4	31.9 31.9 31.9	31.9	8.01 8.01 8.01	8.01	92.00 91.80 91.90	91.90	7.14 7.13 7.14	7.14	7.13	2.2 2.0 2.2	2.1		4.7 3.0 4.2	4.0		9.0 8.0 8.0	8.3		<1.6 <1.6 <1.6	1.6	
				Middle	8.6	18.3 18.3 18.3	18.3	31.9 31.9 31.9	31.9	8.01 8.02 8.02	8.02	91.60 91.50 91.40	91.50	7.13 7.12 7.11	7.12		2.5 2.4 2.5	2.5	2.47	4.6 4.6 5.6	4.9	4.78	8.0 8.0 8.0	8.0	<u>8.22</u>	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	16.2	18.3	18.3	31.9 31.9 31.9	31.9	8.02 8.01 8.02	8.02	91.50 91.60 91.50	91.53	7.11 7.12 7.12	7.12	7.12	2.8 2.7 2.9	2.8		4.4 6.5 5.4	5.4		9.0 8.0 8.0	8.3		<1.6 <1.6 <1.6	1.6	
26-Jan-19	Fine	Moderate	3:46	Surface	1	18.5 18.5 18.5	18.5	32.0 32.0 32.0	32.0	8.01 8.02 8.01	8.01	91.60 92.00 92.00	91.87	7.12 7.15 7.15	7.14	7.12	2.6 2.7 2.4	2.6		5.3 4.6 4.9	4.9		6.0 6.0 6.0	6.0		<1.6 <1.6 <1.6	1.6	
				Middle	8.8	18.4 18.4 18.4	18.4	32.1 32.1 32.1	32.1	8.05 8.04 8.04	8.04	90.90 90.80 91.10	90.93	7.09 7.08 7.10	7.09		2.9 2.8 3.0	2.9	2.89	4.7 4.5 4.8	4.7	5.31	7.0 7.0 7.0	7.0	6.67	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	16.6	18.4 18.4 18.4	18.4	32.1 32.1 32.1	32.1	8.05 8.05 8.05	8.05	90.30 90.40 90.80	90.50	7.05 7.05 7.08	7.06	7.06	3.2 3.2 3.2	3.2		6.5 6.2 6.3	6.3		7.0 7.0 7.0	7.0		<1.6 <1.6 <1.6	1.6	
29-Jan-19	Cloudy	Moderate	21:27	Surface	1	18.4 18.4 18.4	18.4	32.6 32.6 32.7	32.6	8.15 8.15 8.15	8.15	100.50 96.30 97.20	98.00	6.74 6.45 6.52	6.57	6.54	2.1 2.1 2.2	2.1		<0.5 <0.5 <0.5	0.5		4.0 5.0 4.0	4.3		<1.6 <1.6 <1.6	1.6	
				Middle	8.3	18.3 18.3 18.3	18.3	32.7 32.7 32.7	32.7	8.16 8.15 8.15	8.15	98.90 96.30 96.60	97.27	6.63 6.45 6.47	6.52		2.1 2.1 2.2	2.1	2.19	1.0 1.2 1.8	1.3	1.26	5.0 4.0 5.0	4.7	4.33	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	15.6	18.3 18.3 18.4	18.3	32.7 32.7 32.6	32.7	8.15 8.16 8.15	8.15	96.10 98.70 96.50	97.10	6.44 6.60 6.47	6.50	6.50	2.3 2.3 2.3	2.3		1.6 2.2 2.0	1.9		4.0 4.0 4.0	4.0		<1.6 <1.6 <1.6	1.6	
31-Jan-19	Fine	Moderate	22:50	Surface	1	18.6 18.6 18.7	18.6	31.9 31.9 31.9	31.9	8.03 8.03 8.03	8.03	90.70 90.80 90.60	90.70	6.87 6.87 6.87	6.87	6.87	1.8 1.9 1.8	1.8		1.2 2.0 2.0	1.7		5.0 4.0 5.0	4.7		<1.6 <1.6 <1.6	1.6	
				Middle	8.8	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.04 8.04 8.04	8.04	90.80 90.50 90.50	90.60	6.88 6.86 6.87	6.87	-	2.0 1.8 2.0	1.9	1.98	2.9 2.2 2.2	2.4	2.13	5.0 5.0 5.0	5.0	4.89	<1.6 <1.6 <1.6	1.6	1.60
				Bottom	16.6	18.6 18.6 18.6	18.6	31.9 31.9 31.9	31.9	8.04 8.04 8.04	8.04	90.30 90.30 90.60	90.40	6.85 6.85 6.87	6.86	6.86	2.2 2.2 2.1	2.2		2.4 2.3 2.0	2.2		5.0 5.0 5.0	5.0		<1.6 <1.6 <1.6	1.6	

Water Quality Monitoring Results at IS3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	Salinit	y (ppt)	p	Н	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Τι	urbidity(NT	U)	Susper	nded Solids	s (mg/L)	С	opper (μm	/L)	To	tal PAH (µr	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
3-Jan-19	Cloudy	Moderate	5:39			17.8		33.7		8.17		81.50		5.87			2.7			1.8			4.0			<1.6		
				Surface	1	17.8	17.8	33.7	33.7	8.17	8.17	82.80	83.90	5.97	6.05		2.5	2.6		1.7	1.6		4.0	4.0		<1.6	1.6	
						17.8		33.7		8.18		87.40		6.31		6.01	2.7			1.3		ł	4.0		ł	<1.6		ł
				Middle	8.0	17.8 17.8	17.8	33.7 33.7	33.7	8.21 8.17	8.19	85.40 81.10	82.90	6.16 5.84	5.98		2.7	2.7	2.63	1.6	1.6	1.44	4.0	4.3	4 22	<1.6	1.6	1.60
				ivildule	0.0	17.8	17.0	33.7	33.1	8.17	0.19	82.20	02.90	5.84	5.96		2.7 2.6	2.1	2.03	1.4 1.9	1.0	1.44	4.0 5.0	4.3	4.22	<1.6 <1.6	1.6	1.60
						17.8		33.8		8.22		83.80		6.04			2.6			1.0		ł	4.0		ł	<1.6		ł
				Bottom	15.0	17.8	17.8	33.7	33.7	8.17	8.19	81.00	82.27	5.84	5.93	5.93	2.6	2.6		1.3	1.1		4.0	4.3		<1.6	1.6	
						17.8		33.7		8.18		82.00		5.91			2.6			1.0			5.0			<1.6		
5-Jan-19	Sunny	Calm	7:10			18.8		33.1		8.08		94.30		7.40			2.1			2.8			4.0			<1.6		
	,			Surface	1	18.8	18.8	33.1	33.1	8.08	8.08	94.20	94.27	7.40	7.40		2.1	2.1		2.7	2.7		5.0	4.3		<1.6	1.6	
						18.8		33.1		8.08		94.30		7.40		7.38	2.0			2.6			4.0			<1.6		
						18.8		33.1		8.08		94.00		7.37		7.50	2.3			3.2		1	4.0		1	<1.6		1
				Middle	8.7	18.8	18.8	33.1	33.1	8.08	8.08	93.90	93.90	7.37	7.37		2.4	2.3	2.27	3.2	3.2	3.40	4.0	4.0	4.11	<1.6	1.6	1.60
						18.8		33.1		8.07		93.80		7.36			2.3			3.1			4.0			<1.6		
				D #	40.0	18.9	40.0	33.1	00.4	8.07	0.07	93.80	00.07	7.35	7.00	7.00	2.4			4.6	4.0		4.0	4.0		<1.6	4.0	
				Bottom	16.2	18.9 18.9	18.9	33.1 33.1	33.1	8.07 8.07	8.07	93.90 93.90	93.87	7.36 7.36	7.36	7.36	2.5	2.4		4.2 4.2	4.3		4.0 4.0	4.0		<1.6 <1.6	1.6	
8-Jan-19	Fino	Moderate	8:57			18.3		33.7		8.32																		
0-Jan-19	Fine	Woderate	0.57	Surface	1	18.3	18.3	33.7	33.7	8.31	8.31	91.70 91.90	91.80	7.03 7.05	7.04		1.6 1.6	1.6		3.4 3.2	3.2		6.0 6.0	6.0		<1.6 <1.6	1.6	
				Gunaco		18.3	10.0	33.7	00.1	8.31	0.01	91.80	01.00	7.05	7.01		1.7	1.0		3.1	0.2		6.0	0.0		<1.6		
						18.3		33.8		8.31		91.70		7.03		7.03	1.7			2.9		ł	6.0		ł	<1.6		ł
				Middle	9.1	18.3	18.3	33.8	33.8	8.31	8.32	91.40	91.50	7.01	7.02		1.9	1.8	1.82	3.1	2.9	2.87	6.0	6.0	6.00	<1.6	1.6	1.60
						18.3		33.8		8.33		91.40		7.01			1.8			2.6			6.0			<1.6		
						18.3		33.8		8.34		91.50		7.02			2.0			2.8		1	6.0		1	<1.6		1
				Bottom	17.2	18.3	18.3	33.8	33.7	8.31	8.32	91.60	91.53	7.02	7.02	7.02	2.0	2.0		2.2	2.5		6.0	6.0		<1.6	1.6	
						18.3		33.7		8.31		91.50		7.02			2.1			2.5			6.0			<1.6		
10-Jan-19	Sunny	Moderate	10:07			18.5		33.4		8.37		88.70		6.82			1.8			1.5			6.0			<1.6		
				Surface	1	18.5	18.5	33.4	33.4	8.36	8.36	89.00	88.90	6.84	6.83		1.7	1.7		1.4	1.4		7.0	6.3		<1.6	1.6	
						18.5		33.4		8.36		89.00		6.84		6.82	1.6			1.3			6.0			<1.6		
				Middle	9.2	18.5	10 5	33.4	22.4	8.36	8.36	88.40	88.53	6.80	6.01		2.1	2.1	2.02	1.1	4.9	1.43	6.0	6.0	6 1 1	<1.6	1.6	1.60
				ivildale	9.2	18.5 18.5	18.5	33.4 33.4	33.4	8.36 8.37	8.36	88.40 88.80	88.53	6.80 6.83	6.81		2.2 2.1	2.1	2.02	1.6 1.3	1.3	1.43	6.0 6.0	6.0	<u>6.11</u>	<1.6 <1.6	1.6	1.60
						18.5	-	33.4		8.38		88.10		6.79	1		2.1			1.7		ł	6.0		ł	<1.6		ł
				Bottom	17.3	18.5	18.5	33.4	33.4	8.36	8.37	89.00	88.60	6.84	6.82	6.82	2.2	2.2		1.4	1.6		6.0	6.0		<1.6	1.6	
				Bottom		18.5	10.0	33.4	00.1	8.36	0.07	88.70	00.00	6.82	0.02	0.02	2.2			1.6	1.0		6.0	0.0		<1.6		
12-Jan-19	Sunny	Moderate	11:33			18.5		33.1		8.09		99.70		6.72			2.1			10.0			6.0			<1.6		
				Surface	1	18.5	18.5	33.1	33.1	8.09	8.09	97.20	97.90	6.55	6.60		2.1	2.1		9.7	9.5		5.0	5.3		<1.6	1.6	
						18.5		33.1		8.09		96.80		6.52		6.57	2.2			8.9			5.0			<1.6		
						18.5		33.1		8.10		98.20		6.62		0.57	2.2			8.3		1	5.0		1	<1.6		1
				Middle	8.5	18.5	18.5	33.1	33.1	8.09	8.09	96.70	97.23	6.51	6.55		2.2	2.2	2.18	8.5	8.6	8.63	5.0	5.0	5.22	<1.6	1.6	1.60
						18.5		33.1		8.09		96.80		6.52			2.2			9.0			5.0			<1.6		
						18.5		33.1		8.10		97.70		6.58			2.2			8.0			5.0			<1.6		
				Bottom	15.9	18.5	18.5	33.1	33.1	8.09	8.09	96.40	96.90	6.49	6.52	6.52	2.2	2.2		7.6	7.8		6.0	5.3		<1.6	1.6	
45 1 40		0.1	40.40			18.5		33.1		8.09		96.60		6.50			2.2			7.7			5.0			<1.6		
15-Jan-19	Sunny	Calm	13:40	Surface	4	18.9	18.9	32.3	32.3	8.00	8.00	92.40	92.53	7.09	7.10		2.2	2.3		0.9	0.9		6.0	6.0		<1.6	1.6	
				Juliace	'	18.9 18.9	10.5	32.3 32.3	32.3	8.00 8.00	0.00	92.50 92.70	32.33	7.10 7.12	7.10		2.3 2.3	2.5		1.1 0.7	0.5		6.0 6.0	0.0		<1.6 <1.6	1.0	
	1					18.9		32.3		8.00		92.70		7.12		7.10	2.3			<0.5		1	6.0		1	<1.6		ł
	1			Middle	8.5	18.9	18.9	32.3	32.3	8.00	8.00	92.60	92.43	7.00	7.09		2.3	2.4	2.33	<0.5	0.5	0.69	6.0	6.0	6.00	<1.6	1.6	1.60
	1					18.9		32.3		8.00		92.40	1	7.09			2.4	1		<0.5			6.0			<1.6		
I						18.9		32.3		8.00		92.50		7.11			2.4			0.9		1	6.0		1	<1.6		1
	1			Bottom	16.0	18.9	18.9	32.3	32.3	8.00	8.00	92.20	92.37	7.08	7.09	7.09	2.3	2.4		0.5	0.7	l	6.0	6.0	l	<1.6	1.6	l
						18.9		32.3		8.00		92.40		7.09			2.4			0.6			6.0			<1.6		

Water Quality Monitoring Results at IS3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depth	(m)	Tempera	nture (°C)	Salinit	y (ppt)	р	Н	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	T	urbidity(NT	U)	Susper	ided Solids	s (mg/L)	С	opper (μm	/L)	To	tal PAH (µn	n/L)
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*		Average			Average		Value	Average	DA*
17-Jan-19	Sunny	Moderate	14:40			18.2		33.4		8.25		97.70		7.54			1.6			2.2			<1			<1.6		
	,			Surface	1	18.2	18.2	33.5	33.4	8.25	8.25	97.50	97.17	7.53	7.50		1.5	1.6		1.4	1.7		<1	1.0		<1.6	1.6	
						18.2		33.5		8.25		96.30		7.43		7.44	1.6			1.6			<1			<1.6		
						18.2		33.4		8.25		95.80		7.40		7.44	2.1		1	1.0		1	<1			<1.6		
				Middle	8.8	18.2	18.2	33.5	33.4	8.25	8.25	94.90	95.57	7.32	7.38		2.0	2.0	1.94	1.0	1.2	1.33	<1	1.0	1.00	<1.6	1.6	1.60
						18.2		33.5		8.25		96.00		7.41			2.0			1.5			<1			<1.6		
				_		18.2		33.4		8.25		91.40		7.06			2.3			8.0			<1			<1.6		
				Bottom	16.7	18.2	18.2	33.4	33.4	8.25	8.25	90.70	91.13	7.01	7.04	7.04	2.2	2.2		1.5	1.1		<1	1.0		<1.6	1.6	
						18.2		33.5		8.26		91.30		7.05			2.2			1.0			<1			<1.6		
19-Jan-19	Fine	Moderate	15:31	0 (18.0	40.0	33.5	00.5	8.23	0.05	88.10	00.07	6.58	0.57		1.8	4.0		2.1			7.0			<1.6	4.0	
				Surface	,	18.0	18.0	33.5	33.5	8.25	8.25	87.80	88.07	6.55	6.57		1.8	1.8		1.3	1.7		6.0	6.3		<1.6	1.6	
						18.0		33.5		8.28		88.30		6.59		6.55	1.9			1.6			6.0		4	<1.6		
				Middle	8.9	18.0 18.0	18.0	33.6 33.6	33.6	8.28 8.26	8.26	88.30 87.20	87.43	6.58 6.50	6.52		2.1 2.0	2.0	2.09	2.8	2.7	3.12	7.0 6.0	6.3	6.22	<1.6	1.6	1.60
				Wilduic	0.5	18.1	10.0	33.6	00.0	8.24	0.20	86.80	07.40	6.47	0.02		2.0	2.0	2.00	2.5 2.8	2.7	<u> </u>	6.0	0.5	<u> </u>	<1.6 <1.6	1.0	1.00
						18.0		33.6		8.24		83.40		6.20			2.5		ł	4.8		ł	6.0		-	<1.6		
				Bottom	16.8	18.0	18.0	33.6	33.6	8.28	8.26	85.00	83.83	6.33	6.24	6.24	2.4	2.4		4.8	5.0		6.0	6.0		<1.6	1.6	
						18.0		33.6		8.25		83.10		6.18			2.3			5.4			6.0			<1.6		
22-Jan-19	Fine	Moderate	8:00			17.9		32.6		8.21		93.40		6.77			1.8			3.6			4.0			<1.6		
				Surface	1	17.9	17.9	32.6	32.6	8.20	8.20	93.50	93.53	6.78	6.78		1.7	1.8		3.6	3.9		4.0	4.0		<1.6	1.6	
						17.9		32.6		8.20		93.70		6.80		6.77	1.8			4.6			4.0			<1.6		
						17.9		32.6		8.20		93.20		6.76		0.77	2.0		1	3.0		1	4.0		1	<1.6		
				Middle	8.8	17.9	17.9	32.7	32.6	8.20	8.20	93.30	93.20	6.77	6.76		1.9	2.0	2.09	3.2	3.1	3.96	4.0	4.0	4.00	<1.6	1.6	1.60
						17.9		32.7		8.21		93.10		6.75			2.0			3.2			4.0		_	<1.6		
						17.9		32.7		8.22		93.10		6.76			2.4			5.1			4.0			<1.6		
				Bottom	16.6	17.9	17.9	32.7	32.6	8.20	8.21	93.30	93.17	6.77	6.76	6.76	2.6	2.5		4.5	4.8		4.0	4.0		<1.6	1.6	
						17.9		32.6		8.20		93.10		6.76			2.6			4.8			4.0			<1.6		
24-Jan-19	Sunny	Moderate	9:47	0 (18.4	40.4	31.9	04.0	8.01	0.04	92.00	00.00	7.14			2.2	0.4		3.6			9.0			<1.6	4.0	
				Surface	1	18.4	18.4	31.9	31.9	8.01	8.01	92.10	92.03	7.14	7.14		2.1	2.1		4.6	3.8		8.0	8.7		<1.6	1.6	
						18.4		31.9		8.01		92.00		7.14		7.13	2.0		ł	3.1		ł	9.0		4	<1.6		
				Middle	8.7	18.3 18.3	18.3	31.9	31.9	8.02	8.02	91.60	91.50	7.12	7.11		2.2	2.2	2.22	4.0	3.6	4.04	9.0	8.3	8.44	<1.6	1.6	1.60
				Wildule	0.7	18.3	10.5	31.9 31.9	31.3	8.02 8.02	0.02	91.50 91.40	31.30	7.11 7.11	7.11		2.1 2.3	2.2	2.22	3.3 3.5	3.0	4.04	8.0 8.0	0.5	0.44	<1.6 <1.6	1.0	1.00
						18.3		31.8		8.01		91.40		7.11			2.3		ł	5.2		ł	8.0		-	<1.6		
				Bottom	16.3	18.3	18.3	31.9	31.8	8.02	8.02	91.30	91.40	7.10	7.11	7.11	2.5	2.4		5.1	4.8		8.0	8.3		<1.6	1.6	
						18.3		31.9	•	8.02		91.50		7.11			2.3			4.0			9.0			<1.6		
26-Jan-19	Fine	Moderate	10:41			18.6		31.9		8.04		88.90		6.94			2.3			2.9			7.0			<1.6		
	-		1	Surface	1	18.5	18.5	31.9	31.9	8.04	8.04	88.60	88.70	6.92	6.93		2.0	2.1		3.3	3.2		7.0	7.3		<1.6	1.6	
						18.5		31.9		8.04		88.60		6.92		6.95	2.1			3.3			8.0			<1.6		
						18.5		32.0		8.05		89.20		6.97		0.93	2.8		1	3.9		1	8.0		1	<1.6		
				Middle	8.7	18.5	18.5	32.0	32.0	8.06	8.06	89.50	89.33	6.98	6.98		2.9	2.9	3.00	3.4	3.9	3.88	7.0	7.3	7.33	<1.6	1.6	1.60
						18.5		32.0		8.06		89.30		6.98			3.1			4.3			7.0			<1.6		
				_		18.5		32.1		8.08		89.00		6.94			3.8			4.2			8.0			<1.6		
				Bottom	16.4	18.5	18.5	32.1	32.1	8.08	8.08	89.00	89.00	6.94	6.95	6.95	4.0	3.9		5.3	4.6		7.0	7.3		<1.6	1.6	
	_					18.5		32.1		8.08		89.00		6.96			4.0			4.3			7.0			<1.6		
29-Jan-19	Sunny	Moderate	12:48	Surface	4	18.4	10.4	32.3	20.2	8.11	0 11	98.10	96.77	6.51	6.42		2.5	2.4		3.9	4.3		4.0	4.2		<1.6	1.6	
				Suriace	'	18.4 18.4	18.4	32.3 32.3	32.3	8.11 8.11	8.11	95.00 97.20	90.77	6.30 6.45	0.42		2.4	2.4		4.2 4.7	4.3		5.0 4.0	4.3		<1.6 <1.6	1.6	
						18.4		32.3		8.11		95.40		6.33	1	6.38	2.4		ł	2.5		ł	4.0		-	<1.6		
				Middle	8.4	18.4	18.4	32.3	32.3	8.11	8.11	94.70	95.60	6.28	6.34		2.5	2.5	2.49	2.3	2.4	3.20	4.0	4.3	4.44	<1.6	1.6	1.60
				Wilduic	0.4	18.4	10.4	32.3	02.0	8.12	0.11	96.70	30.00	6.42	0.04		2.5	2.0	2.43	2.3	2.4	0.20	5.0	4.5	3.33	<1.6	1.0	1.00
						18.4		32.3		8.11		94.70		6.29			2.5		1	2.9		1	5.0		1	<1.6		
				Bottom	15.9	18.4	18.4	32.3	32.3	8.13	8.12	95.80	94.93	6.36	6.30	6.30	2.6	2.5		2.8	3.0		5.0	4.7		<1.6	1.6	
						18.4		32.3		8.12		94.30		6.26			2.5			3.2			4.0			<1.6		
31-Jan-19	Sunny	Moderate	14:17			18.6		31.9		8.03		90.10		6.83			1.8			1.8			5.0			<1.6		
			l	Surface	1	18.6	18.6	31.9	31.9	8.03	8.03	90.40	90.23	6.85	6.84	l	1.9	1.9	l	2.3	2.1	l	5.0	5.0		<1.6	1.6	
			l			18.6		31.9		8.03		90.20	<u> </u>	6.84	<u> </u>	6.84	1.9	<u> </u>]	2.2]	5.0]	<1.6		
			l			18.6		31.9		8.03		90.10		6.84		0.04	2.0]	2.0]	5.0		1	<1.6		
			l	Middle	8.7	18.6	18.6	31.9	31.9	8.04	8.04	90.00	89.97	6.83	6.83	l	2.0	2.1	2.06	1.7	1.7	1.68	5.0	5.0	5.00	<1.6	1.6	1.60
			l			18.6		31.9		8.04		89.80		6.82			2.2		1	1.5		1	5.0		1	<1.6		
			l			18.6		31.9		8.04		90.00	l	6.82		l	2.2		l	0.8		l	5.0	l		<1.6		
			l	Bottom	16.4	18.6	18.6	31.9	31.9	8.03	8.04	90.10	90.00	6.83	6.82	6.82	2.2	2.2	l	1.3	1.2	l	5.0	5.0	1	<1.6	1.6	
			<u> </u>			18.6		31.9		8.04		89.90		6.82	1		2.3	1		1.5			5.0			<1.6	l	

APPENDIX J Details of Exceedances Recorded for Water Quality Monitoring

Appendix J - Detail of Water Quality Exceedance 19 January 2019

				Action L	_evel	Limit l	_evel	
Monitoring Location	Tide mode	Parameter	Depth Average	120% of Upstream Control Station	95th Percentile of Baseline Data	130% of Upstream Control Station	99th Percentile of Baseline Data	Remark
IS1	Mid-Flood	Turbidity	1.82	1.75	7.00	1.90	8.40	It is considered that the source for the relatively high turbidity, suspended solid and copper levels were not originated from
IS3	Mid-Flood	Turbidity	2.09	1.75	7.00	1.90	8.40	the construction site based on all construction work were undertaken within the appropriate silt curtain to comply the proposed
IS1	Mid-Ebb	Suspended solid	1.64	1.20	13.80	1.30	18.70	mitigation measure on 19 January 2019. It might be caused by the daily variation of the surrounding
IS2	Mid-Ebb	Suspended solid	2.70	1.20	13.80	1.30	18.70	water quality and elevation by marine movement.
IS3	Mid-Ebb	Suspended solid	2.16	1.20	13.80	1.30	18.70	
IS1	Mid-Flood	Suspended solid	3.68	2.84	13.80	3.08	18.70	
IS3	Mid-Flood	Suspended solid	3.12	2.84	13.80	3.08	18.70	
IS1	Mid-Ebb	Copper	5.22	6.26	2.00	6.79	3.00	
IS2	Mid-Ebb	Copper	5.00	6.26	2.00	6.79	3.00	
IS3	Mid-Ebb	Copper	5.00	6.26	2.00	6.79	3.00	

Appendix J - Detail of Water Quality Exceedance

IS1	Mid-Flood	Copper	5.00	6.40	2.00	6.93	3.00	
IS2	Mid-Flood	Copper	5.67	6.40	2.00	6.93	3.00	
IS3	Mid-Flood	Copper	6.22	6.40	2.00	6.93	3.00	

Remark:

Appendix J - Detail of Water Quality Exceedance 22 January 2019

				Action L	.evel	Limit L	_evel	
Monitoring Location	Tide mode	Parameter	Depth Average	120% of Upstream Control Station	95th Percentile of Baseline Data	130% of Upstream Control Station	99th Percentile of Baseline Data	Remark
IS1	Mid-Ebb	Copper	4.44	5.33	2.00	5.77	3.00	It is considered that the source for the relatively high copper levels were not originated from the construction site based on all
IS2	Mid-Ebb	Copper	4.44	5.33	2.00	5.77	3.00	construction work were undertaken within the appropriate silt curtain to comply the proposed mitigation measure on 22 January
IS3	Mid-Ebb	Copper	4.78	5.33	2.00	5.77	3.00	2019. It might be caused by the daily variation of the surrounding water quality and elevation by marine movement.
IS1	Mid-Flood	Copper	4.22	4.93	2.00	5.34	3.00	manne movement.
IS2	Mid-Flood	Copper	4.22	4.93	2.00	5.34	3.00	
IS3	Mid-Flood	Copper	4.00	4.93	2.00	5.34	3.00	

Remark:

Appendix J - Detail of Water Quality Exceedance 24 January 2019

				Action L	_evel	Limit l	_evel	
Monitoring Location	Tide mode	Parameter	Depth Average	120% of Upstream Control Station	95th Percentile of Baseline Data	130% of Upstream Control Station	99th Percentile of Baseline Data	Remark
IS1	Mid-Ebb	Suspended solid	6.79	6.53	13.80	7.07	18.70	It is considered that the source for the relatively high suspended solid and copper levels were not originated from the construction
IS1	Mid-Ebb	Copper	4.44	9.47	2.00	10.26	3.00	site based on all construction work were undertaken within the appropriate silt curtain to comply the proposed mitigation measure
IS2	Mid-Ebb	Copper	4.44	9.47	2.00	10.26	3.00	on 24 January 2019. It might be caused by the daily variation of the surrounding water quality and
IS3	Mid-Ebb	Copper	4.78	9.47	2.00	10.26	3.00	elevation by marine movement.
IS1	Mid-Flood	Copper	4.22	9.73	2.00	10.54	3.00	
IS2	Mid-Flood	Copper	4.22	9.73	2.00	10.54	3.00	
IS3	Mid-Flood	Copper	4.00	9.73	2.00	10.54	3.00	

Remark:

Appendix J - Detail of Water Quality Exceedance 26 January 2019

				Action L	.evel	Limit L	_evel	
Monitoring Location	Tide mode	Parameter	Depth Average	120% of Upstream Control Station	95th Percentile of Baseline Data	130% of Upstream Control Station	99th Percentile of Baseline Data	Remark
IS1	Mid-Ebb	Suspended solid	5.34	5.12	13.80	5.55	18.70	It is considered that the source for the relatively high suspended solid and copper levels were not originated from the construction
IS3	Mid-Ebb	Suspended solid	5.31	5.12	13.80	5.55	18.70	site based on all construction work were undertaken within the appropriate silt curtain to comply the proposed mitigation measure
IS1	Mid-Ebb	Copper	6.67	7.20	2.00	7.80	3.00	on 26 January 2019. It might be caused by the daily variation of the surrounding water quality and
IS2	Mid-Ebb	Copper	7.00	7.20	2.00	7.80	3.00	elevation by marine movement.
IS3	Mid-Ebb	Copper	6.67	7.20	2.00	7.80	3.00	
IS1	Mid-Flood	Copper	7.44	8.93	2.00	9.67	3.00	
IS2	Mid-Flood	Copper	7.44	8.93	2.00	9.67	3.00	
IS3	Mid-Flood	Copper	7.33	8.93	2.00	9.67	3.00	

Appendix J - Detail of Water Quality Exceedance 29 January 2019

				Action L	.evel	Limit l	_evel	
Monitoring Location	Tide mode	Parameter	Depth Average	120% of Upstream Control Station	95th Percentile of Baseline Data	130% of Upstream Control Station	99th Percentile of Baseline Data	Remark
IS2	Mid-Flood	Suspended solid	3.77	3.26	13.80	3.54	18.70	It is considered that the source for the relatively high suspended solids and copper levels were not originated from the construction
IS1	Mid-Ebb	Copper	4.56	4.93	2.00	5.34	3.00	site based on all construction work were undertaken within the appropriate silt curtain to comply the proposed mitigation measure
IS2	Mid-Ebb	Copper	4.67	4.93	2.00	5.34	3.00	on 29 January 2019. It might be caused by the daily variation of the surrounding water quality and
IS3	Mid-Ebb	Copper	4.33	4.93	2.00	5.34	3.00	elevation by marine movement.
IS1	Mid-Flood	Copper	4.67	5.47	2.00	5.93	3.00	
IS2	Mid-Flood	Copper	4.22	5.47	2.00	5.93	3.00	
IS3	Mid-Flood	Copper	4.44	5.47	2.00	5.93	3.00	

Remark:

Appendix J - Detail of Water Quality Exceedance 31 January 2019

				Action L	.evel	Limit L	.evel	
Monitoring Location	Tide mode	Parameter	Depth Average	120% of Upstream Control Station	95th Percentile of Baseline Data	130% of Upstream Control Station	99th Percentile of Baseline Data	Remark
IS1	Mid-Ebb	Turbidity	2.54	2.41	7.00	2.61	8.40	It is considered that the source for the relatively high turbidity and copper levels were not originated
IS1	Mid-Ebb	Copper	5.00	6.00	2.00	6.50	3.00	from the construction site based on all construction work were undertaken within the appropriate
IS2	Mid-Ebb	Copper	4.89	6.00	2.00	6.50	3.00	silt curtain to comply the proposed mitigation measure on 31 January
IS3	Mid-Ebb	Copper	4.89	6.00	2.00	6.50	3.00	2019. It might be caused by the daily variation of the surrounding
IS1	Mid-Flood	Copper	5.00	6.00	2.00	6.50	3.00	water quality and elevation by marine movement.
IS2	Mid-Flood	Copper	5.00	6.00	2.00	6.50	3.00	
IS3	Mid-Flood	Copper	5.00	6.00	2.00	6.50	3.00	

Remark:

APPENDIX K

Event and Action Plan

Event / Action Plan for Construction Dust Monitoring

EVENT		AC	TION	
EVENT	ET	IEC	ER	Contractor
ACTION LEVEL				
Exceedance for one sample	 Inform the Contractor, IEC and ER; Discuss with the Contractor and IEC on the remedial measures required; Repeat measurement to confirm findings; Increase monitoring frequency 	Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures.	Confirm receipt of notification of exceedance in writing.	Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate.
Exceedance for two or more consecutive samples	 Inform the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Repeat measurements to confirm findings; Increase monitoring frequency to daily; If exceedance continues, arrange meeting with the IEC, ER and Contractor; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise Implementation of remedial measures. 	 Identify source and investigate the causes of exceedance; Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal as appropriate.

Gammon Construction Limited Central Kowloon Route – Kai Tak West

Appendix K Event Action Plan

Appendix K	Event Action Plan			
EVENT LIMIT LEVEL		ACT	TION	
	ET	IEC	ER	Contractor
Exceedance for one sample	 Inform the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER and Contractor on possible remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise implementation of remedial measures.	1. Identify source(s) and investigate the causes of exceedance; 2. Take immediate action to avoid further exceedance; 3. Submit proposals for remedial measures to ER with a copy to ET and IEC within three working days of notification; 4. Implement the agreed proposals; 5. Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Notify Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented; Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; Review the effectiveness of the Contractor's remedial measures and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with ET, ER, and Contractor on the potential remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Construction Noise Monitoring

EVENT		ACT	ΓΙΟΝ		
	ET	IEC	ER	Contractor	
Exceedance of Action Level	 Notify the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; and Increase monitoring frequency to check mitigation effectiveness. 	Review the investigation results submitted by the contractor; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor.	 Confirm receipt of notification of complaint in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; and Implement noise mitigation proposals. 	
Exceedance of Limit Level	1. Notify the Contractor, IEC, EPD and ER; 2. Repeat measurement to confirm findings; 3. Increase monitoring frequency; 4. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 5. Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; 6. Inform IEC, ER and EPD the causes and actions taken for the exceedances; 7. Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and 8. If exceedance stops, cease additional monitoring.	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 	

Event and Action Plan for Continuous Noise Monitoring

EVENT Action/Limit Level		ACTI	ON		
	ET	IEC	ER	CONTRACTOR	
Action/Limit Level	1. Identify source; 2. Repeat measurement. If two consecutive measurements exceed Action/Limit Level, the exceedance is then confirmed; 3. If exceedance is confirmed, notify IEC, ER and Contractor; 4. Investigate the cause of exceedance and ckeck Contractor's working procedures to determine possible mitigation to be implemented; 5. Discuss jointly with the IEC, ER and Contractor and formulate remedial measures; and 6. Assess effectiveness of Contractor's remedial actions and keep IEC and ER informed of the results.	 Check monitoring data submitted by the Works Contract 1123 ET; Check the Contractor's working method; Discuss with the ER, Works Contract 1123 ET and Contractor on the potential remedial measures; and Review and advise the Works Contract 1123 ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	1. Confirm receipt of notification of exceedance in writing; 2. In consultation with the Works Contract 1123 ET and IEC, agree with the Contractor on the remedial measures to be implemented; 3. Ensure the proper implementation of remedial measures; and 4. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	 Identify source with the Works Contract 1123 ET; If exceedance is confirmed, investigation the cause of exceedance and take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET of notification; Implement the agreed proposals; Liaise with ER to optimize the effectiveness of the agreed mitigation; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 	

Event and Action Plan for Water Quality Monitoring

EVENT		ACT	TION	
	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss remedial measures with IEC and Contractor and ER.	1. Discuss with ET, ER and Contractor on the implemented mitigation measures; 2. Review proposals on remedial measures submitted by Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER on the effectiveness of the implemented mitigation measures.	Discuss with IEC, ET and Contractor on the implemented mitigation measures; Make agreement on the remedial measures to be implemented; Supervise the implementation of agreed remedial measures.	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ER, ET and IEC and purpose remedial measures to IEC and ER; and Implement the agreed mitigation measures.
Action level being exceeded by more than one consecutive sampling days	 Repeat in-situ measurement on next day of exceedance to confirm findings; Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss remedial measures with IEC, contractor and ER; Ensure remedial measures are implemented. 	 Discuss with ER, Contractor and ER on the implemented mitigation measures; Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	1. Discuss with ER, IEC and Contractor on the proposed mitigation measures; 2. Make agreement on the remedial measures to be implemented; and 3. Discuss with ET, IEC and Contractor on the effectiveness of the implemented remedial measures.	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and ER and submit proposal of remedial measures to ER and IEC within 3 working days of notification; and Implement the agreed mitigation measures.

Event and Action Plan for Water Quality Monitoring

EVENT	ACTION												
	ET	IEC	ER	CONTRACTOR									
Limit Level being exceed by one sampling day	 Repeat measurement on next day of exceedance to confirm findings; Inform IEC, contractor and ER; Rectify unacceptable practice; Check monitoring data, all plant, equipment and Contractor's working methods; Consider changes of working methods; Discuss mitigation measures with IEC, ER and Contractor; and Ensure the agreed remedial measures are implemented. 	 Discuss with ET, Contractor and ER on the implemented mitigation measures; Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	 Discuss with ET, IEC and Contractor on the implemented remedial measures; Request Contractor to critically review the working methods; Make agreement on the remedial measures to be implemented; and Discuss with ET, IEC and Contractor on the effectiveness of the implemented remedial measures. 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and ER and submit proposal of additional mitigation measures to ER and IEC within 3 working days of notification; and Implement the agreed remedial measures. 									
Limit Level being exceed by more than one consecutive sampling days	 Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; and Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	 Discuss with ET, Contractor and ER on the implemented mitigation measures; Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	 Discuss with ET, IEC and Contractor on the implemented remedial measures; Request Contractor to critically review the working methods; Make agreement on the remedial measures to be implemented; Discuss with ET and IEC on the effectiveness of the implemented mitigation measures; and Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the dredging activities 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and ER and submit proposal of additional mitigation measures to ER and IEC within 3 working days of notification; and Implement the agreed remedial measures. As directed by the ER, to slow down or stop all or part of the 									

Appendix K	Event Action Plan		
		until no exceedance of Limit level.	dredging activities until no exceedance of Limit level

APPENDIX L

Cumulative Statistics on Complaints, Notification of Summons and Successful Prosecutions

Appendix L Cumulative Statistics on Complaints, Notification of Summons and Successful Prosecutions

	Date received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints				0	7
Notification of summons				0	0
Successful prosecutions				0	0

Appendix L AECOM

APPENDIX M

Monthly Summary Waste Flow Table

Monthly Summary Waste Flow Table for 2019

		Actual Quantities of Inert C&D Materials Generated Monthly (Note 1)									Actual Qua	Actual Quantities of Non-inert C&D Materials (i.e. C&D Wastes) Generated Monthly				Actual Quantities of Contaminated Soil Monthly		Actual Quantities of Land- based Sediment Monthly		Actual Quantities of Marine-based sediment Monthly				
Month			Generated				Disp	osed			Reused			Recycled		Disp	oosed	Reused	Reused	Disp	oosed		Disposed	
MOTH	Fill Material	Arti	ficial Mater	ial	Total	Disposed	Disposed	Disposed	Total		Reused in	Total		Paper/			General		Reused in the Contract		t Designated ite	Dispos	ed at Designat	ed Site
	Soil and Rock	Broken Concrete	Asphalt	Building Derbis	Quantity Generated	as Public Fills at TKO137	as Public Fills at TM38	as Public Fills at CWPFBP	Quantity Disposal	Reused in the Contract	Other Projects	Quantity Reused	Metals	cardboard packaging (Note 3)	Plastics	Chemical Waste	Refuse (Note 2)	Reused in the Contract	Type 1 (Cat. L)	Type 1 (Cat. M _p)	Type 2 (Cat. M _f , Cat. H)	Type 1 (Cat. L, Cat. M _p)	Type 2 (Cat. M _f , Cat. H, Cat. H _p)	Type 3 (Cat. H _f)
Unit	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000Kg)	('000Kg)	('000Kg)	('000L)	('000Kg)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)
Jan	0.500	0.000	0.000	0.000	0.500	0.000	0.019	0.000	0.019	0.000	0.481	0.481	0.000	0.000	0.000	0.000	22.200	0.000	0.000	0.000	0.000	0.000	2.038	0.000
Feb	0.200	0.000	0.000	0.000	0.200	0.000	0.008	0.000	0.008	0.000	0.192	0.192	0.000	0.000	0.000	0.000	15.290	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar																								
Apr																								
May																								
Jun																								
SUB- TOTAL	0.700	0.000	0.000	0.000	0.700	0.000	0.027	0.000	0.027	0.000	0.673	0.673	0.000	0.000	0.000	0.000	37.490	0.000	0.000	0.000	0.000	0.000	2.038	0.000
Jul																								
Aug																								
Sep																								
Oct																								
Nov																								
Dec																								
TOTAL	0.700	0.000	0.000	0.000	0.700	0.000	0.027	0.000	0.027	0.000	0.673	0.673	0.000	0.000	0.000	0.000	37.490	0.000	0.000	0.000	0.000	0.000	2.038	0.000

Notes:

- 1. Assume the density of fill is 2 ton/m³.
- 2. Refuse disposed to NENT landfill.